Journal of Medicinal Plants and By-products (2012) 2: 79-82

Original Article

Chemical Composition of the Essential Oil of Three Tanacetum Species from North-West of Iran

Mohammad Bagher Rezaee^{*}, Kamkar Jaimand and Mahmood Naderi

Phytochemistry Group, Department of Medicinal Plants & By-products, Research Institute of Forest and Rangelands, P.O. Box 1318, Tehran, Iran

Article History: Received: 6 January 2013/Accepted in revised form: 2 February 2013 © 2013 Iranian Society of Medicinal Plants. All rights reserved.

Abstract

The genus Tanacetum is one of the most important medicinal plants that contains 26 species in Iran, 12 of them are endemic. This paper reports the essential oil composition of *Tanacetum angulatum* Willd. *Tanacetum canacens* DC. and *Tanacetum pinnatum* Boiss. growing wild in Iran. Plant flowers and leaves were collected from different locations of North- West of Iran. Samples were hydro-distilled to produce the oils in the yields (v/w) of 0.4% for leaves and 0.02% for flowers for both *T. angulatum* Willd and *T. canacens* DC., collected from Azerbaijan province (Tabriz), in of 0.05% for leaves and 0.2% for flowers *T. pinnatum* from Zanjan province (Zanjan) Main oil components of *T. angulatum* Willd. identified by GC/MS for leaves were 1,8-cineole (75.3%), camphor (8.1%) and for flowers were 1,8-cineole (25.3%), α - calacorene (7.9%) and for flowers were *n*-eicosane (19.7%), α - calacorene (13.3%). Main oil constituents of *T. pinnatum* leaves were camphor (24.2%), α -calacorene (13.3%), and for flowers were germacrene B (33.0%), *n*-eicosane (10.5%).

Key words: *Tanacetum angulatum* Willd., *Tanacetum canacens* DC., *Tanacetum pinnatum* Boiss., Essential oil, Hydrodistillation, 1,8-cineole, Camphor.

Introduction

The Asteraceae is the largest plant family. The family comprises more than 1600 genera and 23000 species [1,2].

The native flora of Iran comprises about 8000 angiosperm species. The genus Tanacetum (L.), formerly Pyrethrum (Zinn.), is a large, poorly defined classification group in the Asteraceae (Compositae) containing polymorph species, many of which have applications as herbal medicines [3]. Tanacetum polycephalum is used in folk medicine to treat many disorders [4], therefore, it seem interesting to investigate its biological activity and chemical analysis. Essential oils are a complex mixture of natural compounds, mainly monoterpenes, sesquiterpenes and their oxygenated derivatives, Asteraceae is a valuable source of essential oilcontaining plants and there are many reports on the volatile constituents of the oils of these plants [5-7].

These oils have been shown to possess antibacterial [8] and antioxidant activity [9].

Materials and Methods

Plant materials

Plant materials were collected from different locations of north west of Iran from Azerbaijan provence (Tabriz) and Zanjan provinces (Zanjan), in Azarbijan province, *T. angulatum* Willd. samples collected on August 2011, from Tabriz 10 Km to Marand, Azerbaijan province, and *Tanacetum canacens* DC. samples from Tabriz to Ahar Ghojehbil defile, Azarbijan province, collected on August 2011, and finaly *T. pinnatum* Boiss. were collected on October 2011, old road Zanjan to Tabriz, from Mianeh 3 km fatigued to Ghareh Chaman from Zanjan, Azerbaijan province.

All samples were hydro-distilled produced the oils in the yields of *T. angulatum* Willd leaf were 0.4% and flower 0.02% (V/W) from Tabrize and Tanacetum canacens DC. leaf were 0.4% and flower 0.02% (V/W) from Tabriz and *T. pinnatum* Boiss. leaf were 0.05% and flower 0.2% (V/W) from Zanjan, respectively, and analyzed by GC and GC/MS. Plant materials were identified at the Research Institute of Forests and Rangelands Herbarium.

GC analysis

GC analysis was performed on a Shimadzu 15A gas chromatograph equipped with a split/splitless injector and a flame ionization detector at 250°C. N₂ was used as a carrier gas (1 mL min⁻¹) and a DB-5 type was utilized as the capillary (50 m \times 0.2 mm, film thickness 0.32 µm). Temperature within the column for 3 min was retained at 60°C, after that the column was heated at a rate of 5°C min⁻¹ until it reached at 220 °C and maintained in this condition for 5 min.

The percentage of relative amounts was calculated from peak area using a Shimadzu C-R4A Chromatopac without applying correction factors.

Table 1 Identification chemical composition of essential oils of *Tanacetum angulatum* Willd., *Tanacetum canescens* DC. and*Tanacetum pinnatum* Boiss.

Compound		T. angulatum		T. canescens		T. pinnatum	
		Tabriz		Tabriz		Zanjan	
	R.T.	Leaf	Flower	Leaf	Flower	Leaf	Flower
2-heptanone	897	1.3	1.5	-	-	-	-
α- pinene	932	0.9	1.3	2.0	-	-	-
Camphene	950	0.8	0.8	0.7	-	-	-
3-octanone	985	-	-	0.8	-	-	-
β-myrcene	992	0.7	0.4	0.7	-	-	-
α-terpinene	1017	1.0	1.4	3.3	-	1.4	-
1,8-cineole	1030	75.3	66.0	25.3	-	12.1	3.5
trans-linalool oxide	1071	0.3	-	-	-	-	-
trans-sabinene hydrate	1099	1.5	2.8	0.6	-	-	2.2
trans- thujone	1113	0.3	0.3		-	0.7	-
Chrysanthenone	1130	1.2	3.6	0.8	-	9.3	3.5
Camphor	1141	8.1	9.0	2.1	-	24.2	6.4
neo-3-thujanol	1154	1.1	0.8	6.1	-	1.3	0.5
δ-terpineol	1165	0.5	0.7	6.2	-	2.8	-
trans-chrysanthenyl acetate	1245	2.0	3.4	-	-	4.2	3.3
cis-ethyl chrysanthemumate	1271	2.5	1.5	-	-	1.4	-
Bornyl acetate	1282	1.2	-	1.6	0.6	2.1	-
Methyl decanoate	1325	-	-	0.7			-
Neryl acetate	1362	-	-	-	0.7	2.2	0.6
Viridiflorene	1496	-	-	-	1.0	0.6	0.6
β-sequiphellandrene	1522	-	-	0.6	_	_	_
<i>trans</i> -calamenene	1531	-	-	_	1.4	-	-
α-calacorene	1546	-	1.1	7.9	13.3	13.3	-
Germacrene B	1560	-	-	1.0	4.8	6.0	33.0
<i>n</i> -tridecanol	1570	-	0.2	2.9	3.9	1.1	2.9
Geranyl isovalerate	1608	-		-	1.2	1.8	-
Humulene epoxide II	1612	-	0.5	3.2	0.6	1.6	-
β -cedrene epoxide	1623	-	-	-	-	0.7	0.9
γ - eudesmol	1630	-	0.4	3.6	3.5	3.4	4.7
α-muurolol	1647	-	-	-	1.9	1.5	1.4
Dihydro-eudesmol	1660	-	0.4	1.6	7.1	-	0.8
Germacrone	1694	-	0.3	1.6	2.6	0.6	0.8
(Z,Z)- farnesol	1718	-	-	2.2	-	0.5	0.8
Curcumenol	1735	-	0.6	7.3	1.4	1.2	1.9
(E,Z)-farnesol	1749	-	-	-	1.7	-	1.9
Cyclopentadecanolide	1834	-	0.8	1.6	10.6	1.4	3.5
<i>n</i> -hexadecanol	1873	-	-	3.5	-	-	2.1
<i>n</i> -nonadecane	1896	_	-	-	-	_	0.6
Methyl hexadecanoate	1923	-	-	-	1.6	-	0.5
Phytol	1943	-	-	-	2.1	-	-
Nootkatin	1960	-	0.9	2.4	-	2.6	-
<i>n</i> -eicosane	2003	-	-	-	19.7	-	10.5
Iso-bergaptene	2034	-	-	-	1.3	0.4	-
<i>n</i> -octadecanol	2084	-	_	0.8	1.2	0.8	-
<i>n</i> -heneicosane	2106	_	_	0.7	5.8	-	0.9
Grandiflorene	2100	-	_	-	3.5	-	2.3
<i>n</i> -tricosane	2288	_	_	-	5.5 7.0	-	1.5
-	-	- 98.7	- 98.3	88.2	98.5	- 99.2	94.2
-	-	70.7	70.5	00.2	70.5	11.4	77.2

Gas Chromatography - Mass Spectrometry

The GC/MS unit consisted of a Varian Model 3400 gas chromatograph coupled to a Saturn II ion trap detector was used . The column was same as GC, and the GC conditions were as above. Mass spectrometer conditions were: ionization potential 70 eV; electron multiplier energy 2000 V.

The identity of the oil components was established from their GC retention indices, relative to C_{7} - C_{25} nalkanes, by comparison of their MS spectra with those reported in the literature [10-12], and by computer matching with the Wiley 5 mass spectra library, whenever possible, by co-injection with standards available in the laboratories.

Results and Discussion

The yield of essential oil obtained by hydrodistillation from flower and leaves of the dried plant in full flowering stage is between 0.02 up to 0.4%. The composition of the essential oil of three tanacetum speices was listed in Table 1. For T. angulatum Willd. Azerbaijan province (Tabriz), were hydro-distilled to produce the oils yields in leaf were 0.4% and flower 0.02% (V/W), from leaf sixteen compounds were identified main compounds were 1,8-cineole (75.3%), camphor (8.1%) and in flowers twenty three compounds were identified main compounds were 1,8-cineole (66.0%), camphor (9.0%), and seconds samples T. canacens DC. from Azerbaijan province (Tabriz), were to produce the oils yields in leaf were 0.4% and flower 0.02% (V/W), from leaf twenty eight compounds were identified main compounds were camphor (25.3%), α -calacorene (7.9%) and in flowers twenty four compounds were identified main compounds were neicosane (19.7%), α -calacorene (13.3%), and the last samples T. pinnatum Boiss. from Zanjan province (Zanjan), with yield in leaf were 0.05% and flower 0.2% (V/W), from leaf twenty seven compounds were identified main compounds were camphor (24.2%), α -calacorene (13.3%), and for flower twenty eight compounds were identified majore compounds were germacrene B (33%), *n*-eicosane (10.5%).

With Comparing of our study two samples *T. angulatum* Willd. and *T. canacens* DC. from Azerbaijan provence (Tabriz), identified for first time but for last samples *T. pinnatum* Boiss. from Zanjan proveince (Zanjan), we have refrences from Esmaeili and Amiri, 2011, the samples of *T. pinnatum* Boiss. were collected during the flowering stage from Khoramabad, Province of Lorestan, Iran, in June 2008, have a paper on "the *in vitro* antioxidant and antibacterial activities of *T. pinnatum* Boiss. grown in

Iran" identification of 25 compounds, representing 98.7% of the oil content. The main components in the oils were camphor (23.2%), α -pinene (8.5%), camphene (7.7%), 1,8-cineole (7.3%), β -eudesmol (5.8%) and caryophyllene oxide (5.6%). The possible antioxidant and antibacterial activity of the samples was studied using the DPPH and the β -carotenelinoleic acid assays and the disc agar diffusion test, respectively. In general, the nonpolar extract of T. pinnatum Boiss. exhibited the greatest antioxidant activity in the DPPH test system. The essential oil displayed the highest antioxidant activity in the β carotene-linoleic acid assay; it showed the best antibacterial activity against Staphylococcus aureus [13]. Comparing the results of different studies on essential oil composition of T. pinnatum Boiss. reveals that their constituents are variable according to their habitat that may be regarded to different chemotyps.

References

- 1. Kadereit JW, Jeffrey C (eds.). Flowering plants vol. VIII. Eudicots. Asterales. Springer. Verlag Press. Berlin Heid elberg. 2007.
- 2. Funk VA, Susanna A, Stuessy T, Bayer R. (eds.). *Systematics, Evolution and Biogeography of the Compositae.* International Association for Plant Taxonomy, Washington D.C. 2009.
- 3. Brown AMG, Edwards CM, Hartman TVP, Marshal JA, Smith RM, Davey MR, Power JB, Lowe KC. Sexual hybrids of *Tanacetum*: biochemical, cytological and pharmacological characterization. J Exp Bot. 1999;50:435-444.
- 4. Zargari A. Medicinal Plants. Vol. 3, Tehran University Press, Tehran, Iran. 1996; 321-322.
- Nori-Shargh D, Norouzi-Arasi H, Mirza M, Jaimand K, Mohammadi S. Chemical composition of the essential oil of *Tanacetum polycephalum* (Schultz Bip. ssp. *heterophyllum*), Flavour Fragr J. 1999;14:105–106.
- 6. Javidnia K, Miri R, Soltani M, Khosravi AR. Composition of the essential oil of *Tanacetum polycephalum* Schultz Bip. subsp. *farsicum* Podl. from Iran. 2008;20:209-211.
- Najafi Gh, Sefidkon F, Mozaffarian V, Zare-Maivan H. The Essential Oil of *Tanacetum polycephalum* Schultz-Bip. subsp. *argyrophyllum* (K. Koch.) Podlech from Iran. J Essent Oil Res. 2007;19:460-462.
- 8. Polatoglu K, Demirci F, Demirci B, Gören N, Can Baser KH. Antimicrobial activity and essential oil composition of a new *T. argyrophyllum* (C. Koch)

Tvzel var. *argyrophyllum* chemotype. J Oleo Sci. 2010;59:307-313

- Amiri H. Chemical Composition, Antibacterial and antioxidant activity of the essential oil of *Tanacetum polycephalum* Schutz. Bip. Int J Bot. 2007;3:321-324.
- Shibamoto T. Retention indices in essential oil analysis. In: capillary gas chromatography in essential oil analysis. Edits., P. Sandra and C. Bicchi, 259-274. Dr. Alfred Huethig Verlag, Heidelberg, 1987.
- 11. Davies NW. Gas chromatographic retention index of monoterpenes and sesquiterpenes on methyl silicone and carbowax 20 M phases. J. Chromatogr.1990;503:1-24.
- 12. Adams RP. Identification of essential oils by Ion trap Mass Spectroscopy. Academic Press, San Diego, CA. 1989.
- 13. Esmaeili A, Amiri H. The *in vitro* antioxidant and antibacterial activities of *Tanacetum pinnatum* boiss. grown in Iran. Bulgarian Chem Commun. 2011;43:532–537.