Effects of Chromium on Enzymatic/Nonenzymatic Antioxidants and Oxidant Levels of Portulaca oleracea L.

Authors

1 Department of Biology, Faculty of Science, Payame Noor University, Tehran, Iran

2 Department of Agronomy, Faculty of Agriculture, Payame Noor University, Tehran, Iran

3 Department of Plant Physiology, Shiraz University, Shiraz, Iran

4 Department of Chemistry, Urmia University,Urmia, Iran

Abstract

Purslane(Portulaca oleracea L.) is a local plant in Iran that can easily breed. Chromium is a heavy metal that causes toxicity for the growth and development of plants. To study the effects of  potassium dichromate on growth, efficiency of photosystem II (Fv/Fm), cell membrane stability index (MSI), indexes of oxidative stress and antioxidant properties of purslane, an experiment was done in a completely randomized design of five levels (0, 25, 50, 75 and 100 ppm Cr per kg of soil) in  a greenhouse condition. After 60 days, the effect of different levels of chromium on growth parameters, Fv/Fm, MSI, total phenolic compound, flavonoid, H2O2 and malondialdehyde content and antioxidants enzymatic activity (catalase, peroxidese and ascorbate peroxidase) was assayed. Along With increasing concentrations of chromium, the malondialdehyde (MDA) and H2O2 was increased, and followed by the enzymatic and nonenzymatic antioxidant compounds (except APX) was increased to compensate the effect of oxidant compounds. But, Heavy metal negatively affected growth parameters such as dry weight and length of root and shoot, Fv/Fm and MSI in contaminated plants. Therefore, the destructive effects due to chromium stress with increases the activity of enzymatic and non-enzymatic antioxidant system was minimized. It was noted that accumulation of chromium in the roots was higher than the shoots of the plants under treatment, significantly. Based on these results, purslane can be introduced as a good candidate for tolerance to chromium.

Keywords


1. De Alcantara MAK, De Camargo OA. Chromium movement in columns of two highly weathered soils. Commun Soil Sci Plan.2004;35:599-613.
2. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. Heavy Metal Stress and Some Mechanisms of Plant Defense Response. Sci. World J. 2015;2015:1-18.
3. Shanker AK, Cervantes C, Loza–Tavera H, Avudainayagam S. Chromium toxicity in plants. ‎Environ Int. 2005;31:739-753.
4. Panda SK, Choudhury S. Chromium stress in plants. Braz J Plant Physiol. 2005;17:95-102.
5. Amin H, Arain BA, Amin F, Surhio MA. Analysis of growth response and tolerance index of Glycine max (L.) Merr. under hexavalent chromium stress.Adv Life Sci. 2014;1:231-241.
6. Scoccianti V, Crinelli R, Tirillini B, Mancinelli V, Speranza A. Uptake and toxicity of Cr(III) in celery seedlings. Chemosphere. 2006;64:1695-1703.
7. Chatterjee J, Kumar P, Sharma PN, Tewari RK. Chromium toxicity induces oxidative stress in turnip. Indian J Plant Physiol. 2015;20:220-226.
8. Amin H, Arain BA, Amin F, Surhio MA. Phytotoxicity of Chromium on Germination, Growth and Biochemical Attributes of Hibiscus esculentus L. Am J Plant Sci. 2013;4:2431-2439.
9. Akinci IE, Akinci SA. Effect of chromium toxicity on germination and early seedling growth in melon (Cucumis melo L.). Afr J Biotechnol. 2010;9:4589-4595.
10. Ahmad S, Nawata E, Hosokawa M, Dome Y, Sakuratani T. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 2002;163:117-123.
11. Borek M, Baczek-Kwinta R, Rapacz M. Chlorophyll fluorescence imaging of cadmium-treated white cabbage plants. E3S Web Conf. 2013;1:1-4.
12. Janmohammadi M, Bihamta MR, Ghasemzadeh, F. Influence of rhizobacteria inoculation and lead stress on the physiological and biochemical attributes of wheat genotypes.  Cercet agron Mold. 2013;46:49-67.
13. Sanchez-Viveros G, Gonzalez-Mendoza D, Alarcon A, Ferrera-Cerrato R. Copper effects on photosynthetic activity and membrane leakage of Azolla filiculoides and A. caroliniana. Int J Agr Biol. 2010;12:365-368.
14. Ghelich S, Zarinkamar F, Niknam V. Determination of peroxidase activity, total phenolic and flavonoid compounds due to Lead toxicity in Medicago sativa L. Adv Environ Biol. 2012;6:2357-2364.
15. Hu R, Sunc K, Suc X, Pana, Y, Zhanga Y, Wang X. Physiological responses and tolerance mechanisms to Pb in two xerophils: Salsola passerina Bunge and Chenopodium album L. J Hazard Mater. 2012;205:131-138.
16. Ahmed HR, Ahmed HA, El-Deep MH, Shouman A. Soil Contamination with Heavy Metals and Its Effect on Growth, Yield and Physiological Responses of Vegetable Crop Plants (Turnip and Lettuce). J Stress Physiol Biochem. 2013;9:145-162.
17. Pazoki A. Evaluation of Flavonoids and Phenols content of Wheat under different Lead, PGPR and Mycorrhiza levels. Biol Forum Int J. 2015;7:309-315.
18. Morsy AA, Salama HHA, Kamel HA, Mansour MMF. Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species. Eurasia J Biosci. 2012;6:1-10.
19. Michalak A. Phenolic Compounds and Their Antioxidant Activity in Plants Growing under Heavy Metal Stress. Pol J Environ Stud. 2006;15:523-530.
20. Diaz l, Bernal A, Pomar F, Merino F. Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicumannum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci. 2001;16:179-188.
21. Pandey N, Pathak GC, Pandey DK, Pandey R. Heavy metals Co, Ni, Cu, Zn and Cd, produce oxidative damage and evoke differential antioxidant responses in spinach. Braz J Plant Physiol. 2009;21:103-111.
22. Devi Chinmayee M, Anu MS, Mahesh B, Mary sheeba A, Mini I, Swapna TSA. comparative study of heavy metal accumulation and antioxidant responses in Jatropha curcas L., IOSR Journal of Environmental Science. Toxicol Food Technol. 2014;8:58-67.
23. Malar S, Vikram SS, Paulo JC, Favas PJ, Perumal V. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud. 2014;55:1-11.
24. Masoodi MH, Ahmad B, Mir SR, Zargar BA, Tabasum N. Portulaca oleracea L. a review. J Pharm Res. 2011;4:3044-3048.
25. WHO. Guidelines for drinking-water quality, 2nd ed. Health criteria and other supporting information. World Health Organization, Geneva. 1996;2:1-281.
26. Azizi E, Rahbarian R, Mirbolook A. Phytoremediation of Cr+6 in Contaminated Soil Using Portulaca oleracea. Iran J Soil Res. 2016;30:161-172.
27. Uddin MK, Juraimi AS, Ali ME, Ismail MR. Evaluation of antioxidant properties and mineral composition of purslane (Portulaca oleracea L.) at different growth stages. Int J Mol Sci. 2012;13:10257-10267.
28. James BR, Petura JC. Hexavalent Chromium extraction from soils acomparison of 5 methods. Environ Sci Technol. 1995;29:2377-2381.
29. USEPA (United States Environmental Protection Agency). Alkaline Digestion for Hexavalent Chromium. Method 3060A. Washington, DC: USEPA. 1996.
30. Maxwell K, Johnson GN. Chlorophyll fluorescence practical guide. J Exp Bot. 2000;51:659-668.
31. Premachandra GS, Saneoka H, Ogata S. Cell membrane stability an indicator of drought tolerance as affected by applied nitrogen in soybean. J Agric Sci. 1990;115:63-66.
32. Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189-198.
33. Sagisaka S. The occurrence of peroxide in a perennial plant Populas gelrica. Plant Physiol. 1976;57:308-309.
34. Swain T, Hillis W. The phenolic constituent of Prunus domestrica L.: The quantitive analysis of phenolic constituents. J Sci Food Agric. 1959;10:63-68.
35. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10:178-182.
36. Holy MC. Indole acetic acid oxidase: a dual catalytic enzyme. Plant Physiol. 1972;50:15-18.
37. Chandlee JM, Scandalios JG. Analysis of variants affecting the catalase development program in Maize scutellum. Theor Appl Genet. 1984;69:71-77.
38. Asada K, Takahashi M. Production and scavenging of active oxygen in chloroplasts. In: Kyle DJ, Osmond B, Arntzen CJ (eds.) Photoinhibition, Amsterdam, Elsevier. 1987;227-287.
39. Sharma DC, Sharma CP, Tripathi RD. Phytotoxic lesions of chromium in maize. Chemosphere. 2003;51:63-68.
40. Nematshahi N, Lahouti M, Ganjeali A. Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). Euro J Exp Bio. 2012;2:969-974.
41. Mathur S, Kalaji HM, Jajoo A. Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant.Photosynthetica, 2016;54:185-192.
42. Abdussalam AK., Ratheesh Chandra P, koorimannil H, Salim N. Response and Bioaccumulation Potential of Boerhavia diffusa L. Towards Different Heavy Metals. J Stress Physiol Biochem. 2013;9:23-36.
43. Sheetal KR, Singh SD, Anand A, Prasad S. Heavy metal accumulation and effects on growth, biomass and physiological processes in mustard. Indian J Plant Physiol. 2016;21:219-223.
44. Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN. Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere. 2000;4:1075-1082.
45. Bacaha N, Shamas RABIA, Bakht JEHAN, Rafi ABDUR, Farhatullah M, Gillani A. Effect of heavy metal and EDTA application on plant growth and phyto-extraction potential of sorghum (Sorghum bicolor). Pak J Bot. 2015;47:1679-1684.
46. Kaur P, Sharma N, Kumar M, Kaur S. Changes in growth and antioxidative enzyme activities in Vicia faba L. seedlings under chromium stress. Indian J Plant Physiol. 2014;2:101-106.
47. Sundaramoorthy P, Chidambaram A, Sankar Ganesh K, Unikannan P, Baskaran L. Chromium stress in paddy: (i) Nutrient status of paddy under chromium stress; (ii) Phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol. 2010;333:597-607.
48. Pande P, Chand S, Yadav VK, Anwar M, Patra DD. Influence of chromium with vermicompost on growth and accumulation by Brahmi. Commun Soil Sci Plant Anal. 2007;38:2815-2829.
49. Vernay P, Gauthier-Moussard C, Jean L. Effect of chromium species on phytochemical and physiological parameters in Datura innoxia. Chemosphere. 2008;72:763-771.
50. Paiva LB, Correa SF, Santa Catarina C, Floh EIS, Silva MGD, Vitória AP. Ecophysiological and biochemical parameters for assessing Cr+6 stress conditions in Pterogyne nitens Tul.: new and usual methods for the management and restoration of degraded areas. Environ Eng Manag J. 2014;13:3073-3081.
51. Nori A, Ahmadizadeh M, Shahbazi H, Aharizad S. Evaluation of physiological responses of durum wheat landraces (TriticumDurum) to terminal drought stress. Adv. Environ. Biol. 2011;5:1947-1954.
52. Chaparzadeh N, Ghodrati-Chagharlou M. Alleviation of adverse effects of copper on Allium cepa L. by exogenous ascorbic acid applicationJ Plant Physiol Breeding. 2013;3:1-12.
53. Chakraborty U, Bhumika P. Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Braz J Plant Physiol. 2012;24:117-130.
54. Allen RD. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 1995;107:1049-1054.
55. Sai Kachout S, Ben Mansoura A, Ennajah A, Leclerc JC, Ouerghi Z, Karray Bouraoui N. Effects of metal toxicity on growth and pigment contents of annual halophyte (A. hortensis and A. rosea). ‎Int J Environ Res. 2015;9:613-620.
56. Mangabeira PA, Ferreira AS, de Almeida AA, Fernandes VF, Lucena E, Souza VL, dos Santos Júnior AJ, liveira AH, Grenier-Loustalot MF, Barbier F. Compartmentalization and ultrastructural alterations induced by chromium in aquatic macrophytes. BioMetals. 2011;24:1017-1026.
57. Hao L, Johnsen R, Lauter G, Baillie D, Bürglin TR. Comprehensive analysis of gene expression patterns of hedgehog-related genes. BMC genomics. 2006;7:1-20.
58. Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK. Chromium toxicity and tolerance in plants. Environ Chem Lett. 2013;11:229-254.
59. Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A. Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci. 2011;12:6894-6918.
60. Keilig K, Ludwig-Müller J. Effect of flavonoids on heavy metal tolerance in Arabidopsis thaliana seedlings. Bot Stud. 2009;50:311-318.
61. Rellán-Álvarez R, Ortega-Villasante C, Álvarez- Fernández A, del Campo FF, Hernández LE. Stress responses of Zea mays to cadmium and mercury. Plant Soil. 2006;279:41-50.
62. Farrag HF, Yasin M, Al-Sodany YM, Faleh G, Otiby FG. Effect of heavy metal pollution on protein expression, enzyme activity, pigments and phytohormones in some plants growing in Wadi Alargy wetlands, Taif, Saudi Arabia. Life Sci J. 2014;11:148-155.
63. Patnaik AR, Achary VMM, Pand BB. Chromium (VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L. J Plant Growth Regul. 2013;71:157-170.
64. Duhan JS. Chromium stress on peroxidase, ascorbate peroxidase and acid invertase in pea (Pisum sativum L.) seedling. Int. J. Biotechnol. Mol Biol Res. 2012;3:15-21.