Combination Effect of Piriformospora indica, Chilling and Gibberellic Acid on Seed Germination Traits of Kelussia odoratissima Mozaff.

Authors

Department of Agronomy, Faculty of Agriculture, Malayer University, Iran

Abstract

Kelussia odoratissima Mozaff. belonging to the Apiaceae family, is well known for its medicinal and nutritional importance, endemic to Iran. Seed dormancy is a major problem present in Kelussia odoratissima leading to low germination percentage; thus, improvement of seed germination and breaking seed dormancy is important. Piriformospora indica, a root-colonizing endophytic fungus, promotes plant growth, development and resistance to biotic and abiotic stresses. In order to evaluate the effects of different treatments of P. indica on seed germination traits of Kelussia odoratissima, an experiment was conducted based on completely randomized design with five treatments and three replications. The experimental treatments were application of fungal mycelium of P. indica (M), spore suspension of P. indica (S), the combination of Gibberellic acid and fungal mycelium (H+M), the combination of Gibberellic acid and spore suspension (H+S), and control (C). Based on the results the highest percentage of germination (75%) and the highest germination rate was related to spore suspension of P. indica. The lowest amount of germination uniformity (GU) observed in spore suspension of P. indica treatment. Among the different treatments, application of P. indica spore suspension resulted in lowest times for 10% germination (D10) and 90% germination (D90). The highest plumule and radicle length observed in spore treatment and in comparison with control, application of spore suspension of P. indica increasedplumule and radicle length by 16% and 32%, respectively. Based on the current results, it seems that spore suspension of P. indica was the best treatment for improvement of seed germination traits.

Keywords


1. Mortensen L, Eriksen E. The effect of gibberellic acid, paclobutrazol and ethephon on the germination of Fagus sylvatica and Picea sitchensis seeds exposed to varying durations of moist chilling. Seed Sci Technol. 2004; 32:21-33.

2. Ahmadi F, Kadivar M, Shahedi M. Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food chem. 2007;105:57-64.

3. Omidbaigi R, Sefidkon F, Saeedi K. Essential oil content and composition of Kelussia odoratissima Mozaff. as an Iranian endemic plant. J Essent Oil Bear Pl. 2008;11: 594-597.

4. Mozaffarian V. Two new genera of Iranian umbelliferea. Bot J. 2003;88:88-94.

5. Hilhorst HW, Toorop PE. Review on dormancy, germinability, and germination in crop and weed seeds. Advances in agronomy (USA). 1997.

6. Bewley JD. Seed germination and dormancy. Plant Cell. 1997;9:1055.

7. Hassani S, Saboora A, Radjabian T, Fallah Husseini H. Effects of temperature, GA3 and Cytokinins on breaking seed dormancy of Ferula assa-foetida L. Iran J Sci Technol. 2009;33:75-85.

8. Hartmann HT, Kester DE, Davies FT, Geneve RL. Plant propagation: principles and practices, Prentice-Hall Inc. 1997.

9. Martınez-Gómez P, Dicenta F. Mechanisms of dormancy in seeds of peach (Prunus persica (L.) Batsch) cv. GF305. Sci Hort. 2001;91:51-58.

10. Karam N, Al-Salem M. Breaking dormancy in Arbutus andrachne L. seeds by stratification and gibberellic acid. Seed Sci Technol. 2001;29:51-56.

11. Jensen M, Eriksen EN. Development of primary dormancy in seeds of Prunus avium during maturation. Seed Sci Technol. 2001;29:307-320.

12. Nadjafi F, Bannayan M, Tabrizi L, Rastgoo M. Seed germination and dormancy breaking techniques for Ferula gummosa and Teucrium polium. J Arid Environ. 2006;64:542-547.

13. Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia. 1998;896-903.

14. Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E. Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol. 2016;7:332.

15. Harman GE. Multifunctional fungal plant symbiont: new tools to enhance plant growth and productivity. New Phytol. 2011;189:647–649.

16. Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Müller J Oelmüller R. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant Microbe Interact. 2008;21:1371-1383.

17. Cosme M, Lu J, Erb M, Stout MJ, Franken P, Wurst S. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling. New Phytolo. 2016;211:1065-1076.

18. Sirrenberg A, Göbel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussner I, Pawlowski K. Piriformospora indica affects plant growth by auxin production. Physiol Plant. 2007;131:581-589.

19. Khalid M, Hassani D, Liao J, Xiong X, Bilal M, Huang D. An endosymbiont Piriformospora indica reduces adverse effects of salinity by regulating cation transporter genes, phytohormones, and antioxidants in Brassica campestris ssp. Chinensis. Environ Exper Bot. 2018;153:89-99.

20. Ghabooli M, Khatabi B, Ahmadi FS, Sepehri M, Mirzaei M, Amirkhani A, Jorrín-Novo JV, Salekdeh GH. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J Proteomics. 2013;94:289-301.

21. Arora M, Saxena P, Choudhary DK, Abdin MZ, Varma A. Dual symbiosis between Piriformospora indica and Azotobacter chroococcum enhances the artemisinin content in Artemisia annua L. World J Microbiol Biotechnol. 2016;32:19.

22. Soltani A, Gholipoor M, Zeinali E. Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environ Exper Bot. 2006;55:195-200.

23. Ellis R, Roberts E. The quantification of ageing and survival in orthodox seeds. Seed Science and Technology (Netherlands). 1981.

24. Abdul-Baki, A and J. D. Anderson. Vigor determination in soybean seed by multiple criteria. Crop Science. 1973;13:630-633.

25. Rueda-Puente EO, Murillo-Amador B, Castellanos-Cervantes T, García-Hernández JL, Tarazòn-Herrera MA, Medina SM, Barrera LE. Effects of plant growth promoting bacteria and mycorrhizal on Capsicum annuum L. var. aviculare ([Dierbach] D’Arcy and Eshbaugh) germination under stressing abiotic conditions. Plant Physiol Biochem. 2010;48:724-730.

26. Barber NA, Kiers ET, Theis N, Hazzard RV, Adler LS. Linking agricultural practices, mycorrhizal fungi, and traits mediating plant–insect interactions. Ecol Appl. 2013;23:1519-1530.

27. Wu J, Ma F, Wang L, Yang J, Huang X. An G, Liu S. Seedling performance of Phragmites australis (Cav.) Trin ex. Steudel in the presence of arbuscular mycorrhizal fungi. J App Microb. 2014;116:1593-1606.

28. Gutowski V.The effect of mycorrhizae on seed germination, development, and reproductive yield of Rapid Gro Radish. Essai. 2015;13:43-46.

29. Francis R, Read, D. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can J Bot. 1995;73:1301-1309.

30. Van Der Heijden MG. Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecol lett. 2004;7:293-303.

31. Varma A, Singh A, Sahay NS, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K. Piriformospora indica: an axenically culturable mycorrhiza-like endosymbiotic fungus. Fungal Associations, Springer. 2001.

32. Peškan-Berghöfer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V, Kost G, Varma A, Oelmüller R. Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant. 2004;122:465-477.

33. Pham GH, Kumari R, Singh A, Malla R, Prasad R, Sachdev M, Kaldorf M, Buscot F, Oelmüller R, Hampp R. Axenic culture of symbiotic fungus Piriformospora indica. Plant surface microbiology, Springer. 2008.

34. Kumar M, Yadav V, Tuteja N, Johri AK. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiol. 2009;155:780-790.

35. Oelmüller R, Sherameti I, Tripathi S, Varma A. Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis. 2009;49:1-17.

36. Achatz B, Von Rüden S, Andrade D, Neumann E, Pons-Kühnemann J, Kogel KH, Franken P, Waller F. Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant Soil. 2010;333:59-70.

37. Fakhro A, Andrade-Linares DR, Von Bargen S, Bandte M, Büttner C, Grosch R, Schwarz D, Franken P. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza. 2010;20:191-200.

38. Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J plant physiol. 2010;167:1009-1017.

39. Das A, Kamal S, Shakil NA, Sherameti I, Oelmüller R, Dua M, Tuteja N, Johri AK, Varma A. The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal Behav. 2012;7:103-112.

40. Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R. Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res. 2012;1:117-131.

41. Shahollari B, Vadassery J, Varma A, Oelmüller R. A leucine‐rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J. 2007;50:1-13.

42. Harrach BD, Baltruschat H, Barna B, Fodor J, Kogel KH. The mutualistic fungus Piriformospora indica protects barley roots from a loss of antioxidant capacity caused by the necrotrophic pathogen Fusarium culmorum. Mol Plant Microbe Interact. 2013;26:599-605.

43. Blechert O, Kost G, Hassel A, Rexer KH, Varma A. First remarks on the symbiotic interaction between Piriformospora indica and terrestrial orchids (pp.683-688). In Mycorrhiza, Springer. 1999.

44. Adya AK, Gautam A, Zhang L, Varma A. Characterization of Piriformospora indica culture filtrate (pp. 345-375). In Piriformospora indica. Springer. 2013.

45. Bagde US, Prasad R, Varma A. Influence of culture filtrate of Piriformospora indica on growth and yield of seed oil in Helianthus annuus. Symbiosis. 2011;53:83.

46. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant physiol. 2009;149:1579-1592.

47. Splivallo R, Fischer U, Göbel C, Feussner I, Karlovsky P. Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant physiol. 2009;150:2018-2029.

48. Grunewald W, Van Noorden G, Van Isterdael G, Beeckman T, Gheysen G, Mathesius U. Manipulation of auxin transport in plant roots during Rhizobium symbiosis and nematode parasitism. Plant Cell. 2009;21:2553-2562.

49. Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington J C. Repression of Auxin response factor 10 by microRNA160 is critical for seed germination and postegermination stages. Plant J. 2007;52:133-146.

50. Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L. AG protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science. 2007;315:1712-1716.

51. Bialek K, Michalczuk L, Cohen JD. Auxin biosynthesis during seed germination in Phaseolus vulgaris. Plant Physiol. 1992;100:509-517.

52. Hentrich M, Böttcher C, Düchting P, Cheng Y, Zhao Y, Berkowitz O, Masle J, Medina J, Pollmann S. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J. 2013;74:626-637.

53. Epstein E, Baldi BG, Cohen JD. Identification of indole-3-acetylglutamate from seeds of Glycine max L. Plant physiol. 1986;80:256-258.

54. Bialek K, Cohen JD. Free and conjugated indole-3-acetic acid in developing bean seeds. Plant Physiol. 1989;91:775-779.

55. Fu X, Harberd NP. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature. 2003;421:740.

56. Chiwocha SD, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross AR, Kermode AR. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J. 2005;42:35-48.

57. Brady SM, Sarkar SF, Bonetta D, McCourt P. The Abscisic acid insensitive 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J. 2003;34:67-75.

58. Thornalley PJ. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J. 1990;269:1-11.