Efficiency Normal and Loaded Parthenolide on Nano-meso Particles as Antiproliferative Agent Against Breast Cancer Cell Line In vitro

Authors

1 National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e- Pajoohesh, 15th Km, Tehran -Karaj Highway, Tehran, Iran.

2 National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e- Pajoohesh, 15th Km, Tehran -Karaj Highway, Tehran, Iran

3 University of Udine Department of Agricultural and Environmental Sciences, Udine, Italy

Abstract

Background: Parthenolide is major sesquiterpene lactones present in Tanacetum parthenium (L.) Sch.Bip. (feverfew).  This compound is known as herbal active principals with potential use in pharmaceutical and medicine. In order to solubility improving, analogue of Parthenolide, aminopropyl theoxy silane -mesoporous silica of Parthenolide, was synthesized as well. In this study, it was extracted from fresh flowers of feverfew and was purified and identified by chromatography methods Cell death of breast cancer cell line MDA-MB-231 was assayed 24 hour after administration of normal and nanoparticle Parthenolide by Methylthiazol Tetrazolium test and Annexin-V-Flous kit and scanning electron microscopy. The results revealed that anti-growth effect of Parthenolide is independent of exposure time and induced apoptosis in cancer cells yet this effect on fibroblast cells as normal ones did not recognized which guarantees the use of this medicinal herb to treat cancers without promotion of other not interested side effect.

Keywords


1. Lu C, Wang W, Jia Y, Liu X, Tong Z, Li B. Inhibition of AMPK/Autophagy Potentiates Parthenolide‐Induced Apoptosis in Human Breast Cancer Cells. J C biochem. 2014;115:1458-1470.

2. Wang W, Adachi M, Kawamura R, Sakamoto H, Hayashi T, Ishida T, Imai K., Shinomura Y. Parthenolide-induced apoptosis in multiple myeloma cells involves reactive oxygen species generation and cell sensitivity depends on catalase activity. Apop. 2006;11:2225-2240.

3. Czyz M, Lesiak‐Mieczkowska K, Koprowska K, Szulawska‐Mroczek A, Wozniak M.Cell context‐dependent activities of parthenolide in primary and metastatic melanoma cells. Brit J pharma. 2010;160:1144-1160.

4. Jin X, Qiu L, Zhang D, Zhang M, Wang Z, Guo Z, Deng C, Guo C. Chemosensitization in non‐small cell lung cancer cells by IKK inhibitor occurs via NF‐κB and mitochondrial cytochrome c cascade. J cell and mol med. 2009;13:4596-4610.

5. Anderson JC, Farland BC, Gladson CL. New molecular targets in angiogenic vessels of glioblastoma tumours. Exp Rev Mol  Med. 2008;10:23-40.

6. Nakshatri H, Rice SE, Bhat-Nakshatri P. Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase. Onco. 2004;23:7330-7350.

7. Sweeney CJ, Mehrotra S, Sadaria MR, Kumar S, Shortle NH, Roman Y, Sheridan C, Campbell RA, Murry DJ, Badve S. The sesquiterpene lactone parthenolide in combination with docetaxel reduces metastasis and improves survival in a xenograft model of breast cancer. Mol  can ther. 2005;4:1004-1020.

8. Guzman M L, Rossi R M, Karnischky L, Li X, Peterson D R, Howard D S, Jordan C T. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005;105:4163-4180.

9. Neelakantan S, Nasim S, Guzman M L, Jordan C T, Crooks P A. Amino parthenolides as novel anti-leukemic agents: Discovery of the NF-κB inhibitor, DMAPT (LC-1). Bio & med chem lett . 2009;19:4346-4360.

10. Hewamana S, Alghazal S, Lin T , Clement M, Jenkins C, Guzman M L, Jordan C T, Neelakantan S, Crooks P A, Burnett A K. The NF-κB subunit Rel A is associated with in vitro survival and clinical disease progression in chronic lymphocytic leukemia and represents a promising therapeutic target. Blood. 2008;111:4681-4700.

11. Ramachandran C, Resek A P, Escalon E, Aviram A, Melnick S J. Potentiation of gemcitabine by Turmeric Force™ in pancreatic cancer cell lines. Onco Rep. 2010;23:1529-1540.

12. Shanmugam R, Jayaprakasan V, Gokmen‐Polar Y, Kelich S, Miller K.D, Yip‐Schneider M, Cheng L, Bhat‐Nakshatri P, Sledge GW, Nakshatri H. Restoring chemotherapy and hormone therapy sensitivity by parthenolide in a xenograft hormone refractory prostate cancer model. The Prost. 2006;66:1498-1510.

13. Sweeney C, Li L, Shanmugam R, Bhat-Nakshatri P, Jayaprakasan V, Baldridge L A, Gardner T, Smith M, Nakshatri H, Cheng L. Nuclear factor-κB is constitutively activated in prostate cancer in vitro and is overexpressed in prostatic intraepithelial neoplasia and adenocarcinoma of the prostate. Clin Can Res. 2004;10:5501-5520.

14. Kim K W, Cho M L, Kim H R, Ju J H, Park M K Oh  H J, Kim J S, Park S H , Lee S H , Kim H Y. Up‐regulation of stromal cell–derived factor 1 (CXCL12) production in rheumatoid synovial fibroblasts through interactions with T lymphocytes: Role of interleukin‐17 and CD40L–CD40 interaction. Arth & Rheu. 2007;56:1076-1090.

15. Suvannasankha A, Crean C D, Shanmugam R, Farag S S, Abonour R, Boswell H S, Nakshatri H. Antimyeloma effects of a sesquiterpene lactone parthenolide.Clin Can Res. 2008;14:1814-1830.

16. Zhang S, Ong CN, Shen HM. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Can Let . 2004;208:143-154.

17. Parada-Turska J, Paduch R, Majdan M, Kandefer-Szerszeñ M, Rzeski W. Antiproliferative activity of parthenolide against three human cancer cell lines and human umbilical vein endothelial cells. Pharm Rep. 2007;59:233-245.

18. Koprowska K, Czyż M, Nowotworów Z B M. Molekularne mechanizmy działania partenolidu–stary lek z nową twarzą Molecular mechanisms of parthenolide action: Old drug with a new face. J Cover. 2015;69:75-85.

19. Wu C, Chen F, Rushing J W, Wang X, Kim H J, Huang G, Haley-Zitlin V, He G. Antiproliferative activities of parthenolide and golden feverfew extract against three human cancer cell lines.  J Med Food. 2006;9:55-70.

20. Sahler J, Bernard J J, Spinelli S L, Blumberg N, Phipps R P.The Feverfew plant-derived compound, parthenolide enhances platelet production and attenuates platelet activation through NF-κB inhibition. Thromb Res. 2011;127:426-440.

21. Won Y K, Ong C N, Shi X, Shen H M. Chemopreventive activity of parthenolide against UVB-induced skin cancer and its mechanisms. Carcino. 2004;25:1449-1460.

22. Cheng G, Xie L. Parthenolide induces apoptosis and cell cycle arrest of human 5637 bladder cancer cells in vitro. Mol. 2011;16:6758-6765.

23. Cijo George V, Kumar DN, Suresh P, Kumar RA. A review on the therapeutic potentials of parthenolide: A sesquiterpene lactone. Int Res J Pharm. 2012;3:69-80.

24. Zhao X, Liu X, Su L. Parthenolide induces apoptosis via TNFRSF10B and PMAIP1 pathways in human lung cancer cells. J Exp & Clin Can Res. 2014;33:1-9.

25. Liu J W, Cai M X, Xin Y, Wu Q S, Ma J, Yang P, Xie H Y, Huang D S. Parthenolide induces proliferation inhibition and apoptosis of pancreatic cancer cells in vitro. J Exp & Clin Can Res. 2010;29:1-10.

26. Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba N A, Darwiche N. What made sesquiterpene lactones reach cancer clinical trials?. Drug dis today. 2010;15:668-674.

27. Shabani S H S, Tehrani S S H, Rabiei Z, Enferadi S T, Vannozzi G P. Peganum harmala L.’s anti-growth effect on a breast cancer cell line. Biotech Rep. 2015;8:138-145.

28. Mathema V B,  Koh Y-S, Thakuri B C, Sillanpää M. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflam. 2012;35:560-570.

29. Kim I H, Kim S W, Kim S H, Lee S O, Lee S T Kim D-G, Lee M-J, Park W H. Parthenolide-induced apoptosis of hepatic stellate cells and anti-fibrotic effects in an in vivo rat model. Expe  & mole med. 2012;44:448-460.

30. Weng S, Sui M, Chen S, Wang J-a, Xu G, Ma J, Shan J, Fang L. Parthenolide inhibits proliferation of vascular smooth muscle cells through induction of G0/G1 phase cell cycle arrest. J  Zhej Uni Sci. 2009;10:528-540.

31. Zong H, Sen S, Zhang G, Albayati C Mu, Gorenstein Z D, Liu X, Ferrari M, Crooks P, Roboz G. In vivo targeting of leukemia stem cells by directing parthenolide-loaded nanoparticles to the bone marrow niche. Leuke. 2015;4:143-153.

32. D'Anneo A, Carlisi D, Lauricella M, Puleio R, Martinez R, Di Bella S, Di Marco P, Emanuele S, Di Fiore R, Guercio A. Parthenolide generates reactive oxygen species and autophagy in MDA-MB231 cells. A soluble parthenolide analogue inhibits tumour growth and metastasis in a xenograft model of breast cancer. Cell Death & Dis. 2013;4:891-910.

33. Majdi M, Liu Q, Karimzadeh G, Malboobi MA, Beekwilder J, Cankar K, de Vos R, Todorović S, Simonović A, Bouwmeester H. Biosynthesis and localization of parthenolide in glandular trichomes of feverfew (Tanacetum parthenium L. Schulz Bip.). Phyto. 2011;72:1739-1750.