Chemical Composition, Antimicrobial and Analgesic Properties of Rosmarinus officinalis L. from North of Iran

Seyed Mohammad Vahdat¹, Maryam Khavarpour² and Sohrab Kazemi³

¹Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
²Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
³Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran

Article History: Received: 22 February 2019/Accepted in revised form: 28 April 2019
© 2012 Iranian Society of Medicinal Plants. All rights reserved.

Abstract

Medicinal plants can be used in food, pharmaceutical and cosmetic products due to their biological and nutritional properties. The objective of this research was to examine the chemical composition, antimicrobial and analgesic activity of Rosmarinus officinalis L. plant originating Amol, north of Iran for the first time. The essential oil was obtained by hydrodistillation. Gas chromatography-mass spectrometry study was used for oil analysis. Staphylococcus aureus, Escherichia coli, Salmonella enteritidis, Bacillus subtilis and Candida albicans were used to examine the antimicrobial activity of the essential oils using agar disk diffusion assay. GC-MS analysis revealed that the oil was dominated by 1,8-cineole (20.20%), α-Pinene (17.29%) and borneol (7.59%). Antimicrobial assays of different dilutions of essential oil showed significant antimicrobial activity against gram-positive bacteria. Furthermore, the water and ethanolic extracts prevented the pain resulting from hot-plate test. The results suggested Rosmarinus officinalis from Amol as an alternative natural compound which has antimicrobial and analgesic effects to use in pharmaceutical industries.

Keywords: Analgesic, Antimicrobial Activity, Chemical Composition, Essential Oil, Extract, Rosmarinus officinalis

Introduction

Rosmarinus officinalis L. belongs to the Labiatae family is one of the most widely used shrub aromatic plant in traditional medicine, remedy and as antifungal and antibacterial [1]. It is cultivated mostly in Mediterranean region and in Asia, Europe and Africa [2]. Since, Rosmarinus officinalis contains different bioactive components including carnosol, carnosic acid, betulinic acid, ursolic acid, rosmanol, rosmarinic acid, oleanolic acid, and micromeric acid methyl ester [3,4], its oil and extract are used in various industries such as food, pharmaceutical, perfumes and cosmetics [5]. Extensive study on this plant has revealed many its pharmacological activities such as anti-inflammatory [6,7], antibacterial [8, 9], antioxidant [10], antiviral, antidepressant, hypoglycemic, hypolipidemic [11, 12] and hepatoprotective [13]. Diaz-Maroto et al., 2007 [14] showed that rosemary essential oil contains monoterpenes (95–98%) and sesquiterpenes (2–5%) compounds. In another study, 1,8-cineole, borneol, verbenone, α-pinene and camphene were the main components of rosemary essential oils [2]. A previous report by Ladan Moghadam, A.R. 2015, indicated that only 20 components were present in essential oil of Rosmarinus officinalis originating from Kermanshah, Iran. The major components of the essential oils were α-pinene (43.12%), camphene (10.5%), 1,8-cineole (10.02%), camphor (8.07 %), linalool (8.09%) and limonene (6.12%) [15].

The chemical compositions of 10 Sicilian Rosmarinus officinalis were studied by Tuttolomondo, T. et al. 2015. Eighty-two compounds have been identified which represent 96.7–99.9% of the essential oil with the yield

¹Corresponding author: Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Email Address: vahdat_mohammad@yahoo.com
Materials and Methods

Material

The aerial parts of *Rosmarinus officinalis* L. were collected in June 2016 from Amol, Mazandaran province (north of Iran). Voucher sample was deposited at the herbarium center of Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran. Samples were air-dried in the shade for 4 days.

Plant Essential Oil and Extract Preparation

The dried samples were ground and 100 g of obtained powders (mesh<25) in 1 L of water was subjected to hydrodistillation for 3 h in Clevenger-type apparatus. The collected essential oils were dried over anhydrous sodium sulphate and after filtration, weighed and stored in a sealed dark vials at 4 °C until tested and used. The yield was determined based on dry weight of the sample. For preparation of plant extract, 100 g of powdered dry parts of plant were extracted with ethanol and water separately by maceration. The extract was collected and filtered by Whatman filter papers. The yielded extract was concentrated under vacuum and kept in a dark bottle in a refrigerator at 4 °C until use. The percent yields of the extract were 13.4% and 9.1% for ethanol and water extract, respectively.

Gas Chromatography - Mass Spectrophotometer Analysis

Separation and identification of essential oil components were carried out using gas chromatography-mass spectrophotometer (GC-MS) analysis. The analysis was performed on an Agilent 6890A gas chromatograph equipped with a Flame Ionization Detector (FID), using HP-5MS capillary column (30 m × 0.25 mm × 0.25 μm) coupled to a Mass Selective Detector MSD 5975C in EI mode (ionization energy voltage 70 eV). Helium was used as carrier gas at a flow rate of 1.0 ml/min. Initial column temperature was 60°C with 4 min hold and was raised at the rate of 6 °C/min to 250 °C. Injector and detector temperatures were set at 280 °C. Essential oil samples (1μl) in hexane (HPLC grade) were autoinjected. All components were identified by comparison of their spectra and retention time with those of the Wiley and NIST Libraries in the computer library and literature [22, 23].

Microbial Strains and Antimicrobial Test

Staphylococcus aureus ATCC 25923, *Escherichia coli* ATCC 25922, *Bacillus subtilis* ATCC 6633 and *Salmonella enteritidis* ATCC 10708 were used in this study. The bacteria species were maintained in Mueller Hinton Agar. Fungal strain was *Candida albicans* (ATCC 10231) which was maintained on Sabour and Dextrose Agar.

The antimicrobial activity of the essential oil was tested by using agar disc diffusion method. In this method, microorganisms were cultured overnight at 37 °C in Mueller Hinton agar and then adjusted with sterile saline to concentration of 1.5x10^8 CFU/ml. Then, a suspension of the tested microorganism was spread on nutrient agar. Different dilutions of essential oils were prepared with DMSO at dilutions of 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128. Filter paper discs of 6 mm in diameter were individually impregnated with 10 μl of tested oil aliquots and then placed on the prepared agar plates. The Petri dishes incubated at 37°C (24 and 72h for bacteria and fungi, respectively). Gentamicin, Streptomycin and Fluconazole (each of 10 μg) were used as positive controls. Negative controls were prepared using DMSO. The inhibition zone diameters (mm) were considered as antimicrobial potential. All tests were done in
Triple-cinate and reported as means ± standard deviation.

Animals

The tests were performed on Swiss male mice with mean weight of 18–25 g. Animals were maintained over a 12 h light-dark cycle and humidity of 50–60% at an environment temperature of 23 ± 2°C, in the animal room of the School of Pharmacy, Mazandaran University of Medical Sciences, Iran. They were fed a standard diet and water ad libitum before use. In each group, six mice were studied. The experiments were done in a quiet room and in the light period of 9 am to 5 pm [24].

Analgesic activity of the Extract and hot-plate test

Five groups of six mice were prepared for injection as follows: group I – saline solution with 10% Tween 80 (negative control), groups II, III, and IV – different dose of water or ethanolic extract (100, 200 and 400 mg/kg), and group V – 10 mg/kg morphine (positive control). Ethanolic extract solutions were prepared in saline solution with 10% Tween 80. In each experiment, mice were injected with 2 ml of solution into the subplantar space of the right hind paw. Then, 15, 30, 45, 60, 75 and 90 min after injection, the animals were placed individually on a hot plate (Pars AZMA Co., Isfahan, Iran), maintained at 52 ± 5°C and the time between the placement of the animal on the hot plate and the occurrence of either the licking of the hind paws, shaking or jumping off from the surface was recorded as there sponse latency [25]. A cut-off time of 40 s was considered if the animal did not show any reaction to the painful stimulus.

Result and Discussion

Chemical Composition of Essential Oil

The essential oil of Rosmarinus officinalis was in high yield of 0.82%. The GC-MS chromatogram of compounds detected in essential oil is shown in Fig. 1. The identified constituents, retention times, chemical structures and their percentages in the oil composition are summarized in Table 1. The GC/MS analysis of oil showed a total of 45 volatile compounds representing 98.17% of total oil. The most abundant components of the oil were 1,8-cineole (20.20%), α-Pinene (17.29%), borneol (7.59%), 1,4-Dimethylbicyclo[3.3.0] oct-3-en-2-one (7.2%), camphor (5.50%), Linalool L (5.06%), verbenone (5.21%), Geraniol (4.29%) and camphene (3.01%). The results show that oil consists of 11 monoterpenes, 21 oxygenated monoterpenes, 4 sesquiterpenes and 2 oxygenated sesquiterpenes. Oxygenated monoterpenes represented the main fraction of the oil. Esters, alcohols, ketone and ether were other components which exist in the Rosmarinus officinalis L. oil (Tables 1).

Antimicrobial Potential of Rosmarinus officinalis Essential Oils

In vitro antimicrobial activities of Rosmarinus officinalis essential oils were assessed against four gram-positive and gram-negative bacteria and Candida albicans using disk diffusion method. Table 2 represents the inhibition zone of undiluted and diluted essential oils determined against tested microorganisms. The result showed that the essential oils exerted different inhibiting activity. The gram-positive Staphylococcus aureus was the most susceptible strain examined to the undiluted oil of Rosmarinus officinalis with the strongest inhibition zone (26 ± 1.30 mm). On the contrary, the antimicrobial activity of the essential oils against the gram-negative salmonella enteritidis was the lowest for Rosmarinus officinalis.

According to Table 2, it can be concluded that all undiluted essential oils of Rosmarinus officinalis showed considerable activity against all tested microorganism compared with gentamicin and streptomycin antibiotics and Fluconazole antifungal (10 µg). some oxygenated monoterpenes, such as 1,8-cineole, linalool, camphor and borneol were documented to have different amounts of antimicrobial potential against various microorganism [26]. Therefore, the significant antimicrobial characteristics of the essential oil of Rosmarinus officinalis are correlated to the components present in this essential oil. Our results demonstrated that gram-positive bacteria were more sensitive to the compounds of the essential oils than gram-negative bacteria. The higher susceptibility of gram-positive bacteria may be related to their impermeable cell membrane which limits diffusion of hydrophobic compounds through its outer wall due to Lipopolysaccharide layers [27].
Fig. 1 GC-MS chromatogram of the essential oil of *Rosmarinus officinalis* L.

Fig. 2 The effect of *Rosmarinus officinalis* L. (a) water and (b) ethanol extract on the pain induced by hot-plate test. The results were shown by (mean ± SEM) the time of pain in 6 animals.

Table 1 Chemical composition of *Rosmarinus officinalis* L. essential oil identified by GC/MS analysis

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Component</th>
<th>RT(min)</th>
<th>%Area</th>
<th>Exact mass (g/mol)</th>
<th>Chemical structure</th>
<th>MS Fragment-ions</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tricyclene</td>
<td>6.055</td>
<td>0.16</td>
<td>136.1</td>
<td></td>
<td>55, 67, 79, 93, 105, 121, 136</td>
<td>C_{10}H_{16}</td>
</tr>
<tr>
<td>2</td>
<td>α-Thujene</td>
<td>6.224</td>
<td>0.08</td>
<td>136.1</td>
<td></td>
<td>65, 93, 119, 136, 354</td>
<td>C_{10}H_{16}</td>
</tr>
<tr>
<td>No.</td>
<td>Compound</td>
<td>Retention Time</td>
<td>Area</td>
<td>Molar Mass</td>
<td>Retention Index</td>
<td>Mass Spectrum</td>
<td>Structure</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>----------------</td>
<td>------</td>
<td>------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>3</td>
<td>α-Pinene</td>
<td>6.574</td>
<td>17.29</td>
<td>136.1</td>
<td></td>
<td>55, 77, 93, 121, 138, 354</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Camphene</td>
<td>6.974</td>
<td>3.010</td>
<td>136.1</td>
<td></td>
<td>55, 61, 67, 73, 79, 86, 93, 107, 121, 136</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Verbenene</td>
<td>7.144</td>
<td>0.760</td>
<td>150.1</td>
<td></td>
<td>56, 65, 77, 91, 105, 119, 134</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>β-Pinene</td>
<td>7.945</td>
<td>1.260</td>
<td>136.1</td>
<td></td>
<td>55, 63, 69, 79, 93, 107, 121, 136</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1-Octen-3-ol</td>
<td>8.130</td>
<td>0.080</td>
<td>128.1</td>
<td></td>
<td>57, 72, 85, 99, 110, 121, 141</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3-Octanone</td>
<td>8.340</td>
<td>0.740</td>
<td>128.1</td>
<td></td>
<td>57, 72, 85, 99, 121, 128</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Myrcene</td>
<td>8.546</td>
<td>1.540</td>
<td>136.1</td>
<td></td>
<td>55, 69, 79, 87, 93, 107, 121, 136</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>α-Phellandrene</td>
<td>9.013</td>
<td>0.360</td>
<td>136.1</td>
<td></td>
<td>58, 65, 77, 93, 105, 119, 136</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>α-Terpinene</td>
<td>9.526</td>
<td>0.890</td>
<td>136.1</td>
<td></td>
<td>55, 65, 77, 84, 93, 105, 121, 136</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1,8-Cineole</td>
<td>10.297</td>
<td>20.20</td>
<td>154.2</td>
<td></td>
<td>55, 71, 81, 93, 108, 125, 139, 154</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>β-trans-Ocimene</td>
<td>10.482</td>
<td>0.200</td>
<td>136.1</td>
<td></td>
<td>55, 67, 79, 93, 105, 121, 136, 154</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>γ-Terpinene</td>
<td>11.329</td>
<td>1.340</td>
<td>136.1</td>
<td></td>
<td>55, 65, 77, 93, 105, 121, 136</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Terpinolene</td>
<td>12.602</td>
<td>1.370</td>
<td>136.1</td>
<td></td>
<td>55, 77, 93, 121, 137, 354</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Linalool L</td>
<td>13.277</td>
<td>5.060</td>
<td>154.2</td>
<td></td>
<td>55, 71, 80, 93, 107, 121, 136, 154</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>β-Fenchyl alcohol</td>
<td>13.763</td>
<td>0.070</td>
<td>154.2</td>
<td></td>
<td>55, 69, 81, 93, 111, 121, 139, 154</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Chrysanthenone</td>
<td>14.22</td>
<td>0.690</td>
<td>150.2</td>
<td></td>
<td>56, 65, 72, 79, 91, 107, 122, 135, 150</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Camphor</td>
<td>15.155</td>
<td>5.500</td>
<td>152.1</td>
<td></td>
<td>55, 69, 81, 95, 108, 127, 128, 152</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>exo-methylcamphelenol</td>
<td>15.293</td>
<td>0.060</td>
<td>154.2</td>
<td></td>
<td>59, 71, 86, 96, 111, 121, 136, 152</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Pinocarvone</td>
<td>15.904</td>
<td>0.360</td>
<td>150.2</td>
<td></td>
<td>62, 69, 81, 91, 108, 122, 135, 150</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Borneol L</td>
<td>16.30</td>
<td>7.590</td>
<td>154.2</td>
<td></td>
<td>67, 95, 119, 139, 446</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Isopinocamphene</td>
<td>16.50</td>
<td>1.120</td>
<td>152.1</td>
<td></td>
<td>55, 69, 83, 95, 110, 139, 152</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Terpinen-4-ol</td>
<td>16.716</td>
<td>1.580</td>
<td>154.2</td>
<td></td>
<td>71, 79, 86, 93, 111, 136, 154</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>α-Terpineol</td>
<td>17.522</td>
<td>1.950</td>
<td>154.2</td>
<td></td>
<td>59, 67, 81, 93, 121, 136, 152</td>
<td></td>
</tr>
</tbody>
</table>
26 Myrtenol 17.851 0.730 152.1 67, 79, 91, 108, 119, 152 C₁₅H₂₀O
27 1,3-Dimethylbicyclo[3.3.0]oct-3-ene 18.267 7.200 150.2 67, 95, 135, 155, 446 C₁₃H₂₂O
28 Verbenone 18.421 5.210 150.2 67, 80, 91, 107, 122, 135, 150 C₁₃H₂₀O
29 Trans-Carveol (+)- 18.708 0.120 152.1 56, 69, 77, 84, 91, 109, 119, 137, 152 C₁₄H₂₀O
30 Citronellol 19.309 0.340 156.2 69, 95, 123, 156, 446 C₁₅H₂₀O
31 Carvone 19.966 1.330 150.2 58, 82, 108, 150, 446 C₁₅H₂₀O
32 Geraniol 20.850 4.290 154.2 69, 93, 123, 154, 446 C₁₅H₂₀O
33 3,7-dimethyl-2,6-Octadienal 21.399 0.260 152.1 56, 69, 84, 94, 109, 123, 137, 152 C₁₄H₂₀O
34 Bornyl acetate 22.087 2.230 196.1 55, 67, 80, 95, 108, 121, 136, 154, 196 C₁₇H₂₀O₂
35 Myrtenyl acetate 23.839 0.090 194.1 69, 91, 119, 152, 354 C₁₇H₂₀O₂
36 Piperitenone 24.434 0.130 150.2 67, 91, 107, 150, 354 C₁₄H₂₀O
37 Eugenol 25.220 0.080 164.1 77, 91, 103, 121, 131, 149, 164, 197 C₁₀H₁₆O₂
38 Geranyl acetate 26.334 0.560 196.1 69, 93, 121, 154, 196 C₁₇H₂₀O₂
39 Methylheugenol 27.130 0.550 178.1 65, 91, 107, 131, 147, 178, 354 C₁₄H₂₂O₂
40 trans-Caryophyllene 27.556 0.880 204.4 55, 69, 79, 93, 105, 120, 133, 147, 161, 175, 189, 204 C₁₄H₂₄
41 α-Humulene 28.784 0.200 204.4 67, 93, 121, 147, 175, 204 C₁₄H₂₂
42 Trans-β-Farnesene 28.999 0.110 204.4 55, 69, 79, 93, 107, 120, 133, 148, 161 C₁₄H₂₄
43 β-Cubebeene 29.770 0.08 204.4 57, 67, 81, 91, 105, 119, 133, 161, 204 C₁₄H₂₄
44 Caryophyllene oxide 33.087 0.350 220.4 55, 69, 79, 93, 109, 121, 135, 149, 161, 177, 187, 209, 220 C₁₅H₂₄O
45 α-Bisabolol 36.132 0.170 222.4 58, 69, 79, 93, 109, 119, 134, 161, 189, 204 C₁₅H₂₄O

Monoterpenes hydrocarbons 27.50 - - - -
Oxigenated monoterpenes 64.51 - - - -
Sesquiterpene hydrocarbons 1.27 - - - -
Oxigenated sesquiterpenes 0.52 - - - -
Other 4.37 - - - -
Total identified 98.17 - - - -

RT: retention time. The components are listed in order of elution from the HP-5MS column.
The antimicrobial and analgesic properties of *Rosmarinus officinalis* plant from Amol were reported for the first time. Twenty constituents were identified in the extracted oil which the main components were mostly oxygenated monoterpenes. Antimicrobial assay showed that the essential oils at various dilutions ranged from 1/2 to 1/64 were active against examined microorganism especially gram-positive strains. The injection of water and ethanolic extracts to mice showed inhibition effect on pain induced by hot plate test. Thanks to high amounts of oxygenated monoterpenes and monoterpenes compounds of oils which show therapeutic and nutritional properties, the studied *Rosmarinus officinalis* is potent for its possible use as natural alternatives to chemical-based antimicrobial and anti-pain agents in food, pharmaceutical and cosmetic industries. For supplementary studies, it is suggested to evaluate other pharmacological potential of the mentioned *Rosmarinus officinalis* such as antioxidant and anti-inflammatory effects.

Acknowledgements

The authors are thankful for the facilities provided to carry out this research in laboratory of Ayatollah Amoli Branch, Islamic Azad University.

References

Table 2 Diameter of microbial inhibition zones (mm) determined by disk diffusion assay

<table>
<thead>
<tr>
<th>Plant name and standard</th>
<th>Oil dilutions and antibiotics weight</th>
<th>Gram positive bacteria</th>
<th>Gram negative bacteria</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Staphylococcus aureus</td>
<td>Bacillus subtilis</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>1</td>
<td>26±1.30</td>
<td>23±1.40</td>
<td>23±1.09</td>
<td>23±0.90</td>
</tr>
<tr>
<td>1/2</td>
<td>22±1.20</td>
<td>23±1.30</td>
<td>19±1.30</td>
<td>14±0.90</td>
</tr>
<tr>
<td>1/4</td>
<td>14±1.02</td>
<td>22±0.80</td>
<td>16±1.10</td>
<td>13±0.30</td>
</tr>
<tr>
<td>Rosmarinus officinalis</td>
<td>1/8</td>
<td>11±0.94</td>
<td>16±1.05</td>
<td>10±0.85</td>
</tr>
<tr>
<td></td>
<td>1/16</td>
<td>10±1.02</td>
<td>13±0.90</td>
<td>10±0.90</td>
</tr>
<tr>
<td></td>
<td>1/32</td>
<td>10±1.20</td>
<td>13±0.65</td>
<td>10±0.50</td>
</tr>
<tr>
<td></td>
<td>1/64</td>
<td>10±0.85</td>
<td>13±0.30</td>
<td>10±0.30</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>10µg</td>
<td>24±1.10</td>
<td>18±0.50</td>
<td>18±1.45</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>10µg</td>
<td>21±0.80</td>
<td>16±0.35</td>
<td>15±0.90</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>10µg</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

All tests were performed in triplicate. Values are given as mean ± SD (n=3).

