Effects of Arbuscular Mycorrhizal (AM) Fungi on Essential Oil Content and Nutrients Uptake in Basil under Drought Stress


1 Former M.Sc. Student of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran

2 Associatet Professor of Horticultural Department, Faculty of Agriculture, Urmia University, Urmia, Iran

3 Associatet Professor of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran

4 Assistant Professor of Horticulture, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran


Study the effects of inoculation with two arbuscular mycorrhizal (AM) fungi, Gm (Glomus mosseae T.H. Nicolson & Gerd.)Gerd & Trappe) and Gi (Glomus intraradices  N.C. Schenck & G.S. Sm.) on the  herb yield, essential oil (EO) content and nutrient acquisition of basil (Ocimum basilicum L.) under drought stress conditions,The experiment conducted with 9 treatments and 4 replications. Drought stress treatments were applied by increasing the irrigation intervals from 4 days to 8 and 12 days. The root colonization, dry matter yield, oil content, oil yield and nutrients uptake decreased as the irrigation intervals increased. The AM fungi inoculation significantly increased the dry matter yield, oil content, oil yield and uptake of N, K, Zn, Fe and Cu as compared to Nm (non-mycorrhizal) plants in both well-watered and drought stressed condition. Analysis of essential oil by GC and GC/MS showed that Linalool, (E)-β-ocimene, eugenol and (Z, E)-farnesol, main components of oil, had no significant variation by drought stress or AM fungi inoculation. The effect of AM fungi inoculation on herb yield, oil content, oil yield and nutrient acquisition was more significant with G. mosseae than G. intraradices. Results suggest that inoculation of AM fungi could be a feasible procedure to increase growth, yield and essential oil production under water deficit conditions.


1. Kramer PJ, Boyer JS. Water relations of plants and soils. Academic press: San Diego.calif.1997.
2. Augé RM, Stodola JW, Tims J.E. and Saxton A.M. Moisture retention properties of a mycorrhizal soil. Plant and Soil. 2001; 230:87-97.
3.Ruiz-Lozano JM. Arbuscular mycorrhiza symbiosis and alleviation of osmotic stress: new perspectives for molecular studies. Mycorrhiza. 2003;13:309-317.
4. Azcon-Aguilar C, Barea, JM.  Interaction between mycorrhizal fungi and other rhizosphere microorganisms.1992;  pp.163-198. In: M.F. Allen (ed.), Mycorrhizal Functioning:An Integrative Fungal Process.1sted. Chapman and Hall, Inc., New York, NY.
5. Frey JE, Ellis JR. Relationship of soil properties and soil amendments to response of Glomus intraradices and soybeans. Canadian Journal of Botany. 1997;75:483-491.
6. Burkert  BA. Robson B. Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol. Biochem. 1994; 26:1117-1124.
7. Hamilton MA, Westermann DT, and James DW. Factors affecting zinc uptake in cropping systems. American, Journal of Soil Science Society. 1993;57:1310-1315.
8. Lambert DH, Weidensaul TC. Elemental uptake by mycorrhizal soybean from sewage-sludge-treated soil. American, Journal of Soil Science Society. 1991;55:393-398.
9. Singer MJ, Munns DN. Soils: An Introduction. Macmillan Publishing Company, New York, NY. 1987.
10. Sirvastava AK. Aromatic plants and its products. Farm bull. 1982;16:1-13.centeral Institute of Medicinal and aromatic plants, lucknow, India.           
11. Swaminathan  K, Verma BC. Responses of three crop species to vesiculararbuscular mycorrhizal infection on zinc-deficient Indian soils. New Phytol. 1979;82:481-487.
12. Sharma AK, Srivastava PC. Effect of vesicular-arbuscular mycorrhizae and zinc application on dry matter and zinc uptake of greengram (Vigna radiata L. Wilczek).Biol Fert Soils. 1991;11:52-56.
13. Sharma  AK, Srivastava PC, Johri BN.  Contribution of VA mycorrhiza to zinc uptake in plants. pp. 1994; 111-124. In: J.A. Manthey, D.E. Crowley, and D.G. Luster (eds.), Biochemistry of Metal Micronutrients in the Rhizosphere. Lewis Publishers, Boca Raton, FL.
14. Kapulnik Y, Douds DD Jr. Arbusculay mycorrhiza: physiology and function. Dordrecht, The Netherlands:    Kluwer Academic Publsihers. 2000
15. AL-Karaki G, Mcmichaael  B, Zak J. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza. 2004;14:263-269.                                                                                  
16. Li XL, George E, Marschner H. Extension of phosphorus and deplation zone in VA-mycorrhizal with clover in a calcareous soil. Plant and Soil. 1991a;136:41-48.
17. Li XL, Marschner H, George E. Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root–shoot transport in white clover. Plant and Soil. 1991b;136:49-57.
18.Chen  BD, Li XL, Tao HQ, Christie P, Wong MH. The role of arbuscular mycorriza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere. 2003;50:839-846.
19. Hawkins HJ, George E. Reduced N-15-nitrogen transport through arbuscular mycorrhizal hypha to Triticum  aestivum L.supplied with ammonium vs. nitrate nutrition. Annals of Botany. 2001; 87: 3003-311.
20. Khaosaad T, Vierheilig H, Nell M, zitterl-Eglseer K, Novak J. Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza. 2006;10:1-7.                                                  
21. Gupta ML, Janard hanan  KK, Chattopadhyay A, Hussain  A. Association of Glomus with palmorosa and its influence on growth and biochemical production. Mycologycal Research. 1990;94:561-563.
22. Khaliq A, Janardhanan Kk. Influence of vesicular arbuscular mycorrhiza fungi and the productivity of cultivated mints. Journal of Medicinal and Aromatic Plant Sciences. 1997;19:7-10.
23. Podila  GK, Douds  DD. Current Advances in mycorrhiza research. 2001;  Aps press.st.paul,
24. Subramanian KS,Santhanakrishana P, Balasubramanian P. Responses of field grown tomato plants to arbuscular mycorrhiza fungal colonization under varying intensities of drought stress. Scientia Horticulture. 2006;107:245-253.
25. Omidbaigi R, Hassani A, Sefidkon F. Essential oil content and composition of sweet basil (Ocimum basilicum) at different irrigation regimes. J. Essent. Oil Bearing Plants. 2003;6:104-108.
26. Davies FT, Svenson SE, Henderson JC, phavaphutanon L, Duray SA, OlaldePortugal V, Meier CE,
and Bos  H. Non-nutritional stress acclimation of mycorrhizal woody plants exposed to drought .
Tree physiology. 1996;16:985-993.
27. Shibamoto T. Retention indices in essential oil analysis. In: Sandra P, Bicchi C (ed) Capillary gas chromatography in essential oil. Dr Alfred Heuthing Verlag, New York, pp. 1987;259-275.
28. Smith SE, Read DJ. Mycorrhizal symbiosis. Acadamic Press. 1997;587 P.
29. Loomis WD, Corteau U. Essential oil biosyn thesis. Recent Advances phytochemistry. 1972;6:147-185.
30. Gany DR, Wang J, Dudareva  N, Hee Nam K Simon, JE, Lewinsohn E, Pichersky E. An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant physiology. 2001;125:539-555.                              
31.Gupta ML, Prasad  A, Ram M, Kumar S. Effect the vesicular- arbuscular mycorrhizal(VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under  field conditions. Bioresoure Technology. 2002; 81:77-79.                                                                                                         
32. Freitas  MSM, Martins MA, Curcino Vieira IJ. Yield and quality of essential oils of Mentha arvensis in
response to inoculation with arbuscular mycorrhizal fungi. Pesquisa Agropecuari a Brasileira. 2004;39:887-894.                         
33. Kapoor R, Giri B, Mukerji KG.  Mycorrhization of coriander (coriandrum sativum L.) to enhance the concentration and quality of essential oil. Journalof the Science of Food and Agriculture. 2002b;88:1-4.                                                             
34. Kapoor R, Giri B, Mukerji KG. Glomus macrocarpum: a potential bioinoculant  to improve essential oil quality and concentration in dill (Anethum graveolens L.) and carum (Trachyspermum ammi).World Journal Microbial Biotechnology. 2002a;18:459-463.                                                                                             
35. Kapoor R, Giri B, Mukerji KG. Improved growth and essential oil yield and quality in foeniculum Vulgare Mill. On mycorrhizal inoculation supplemented with p- fertilizer. Bioresoure Technology. 2004;93:307-311.
36.  Copetta  A, Lingua G, Berta, G. Effect of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var.Genoves. Mycorrhiza. 2006;16:485-494.
37. Allen  MF, Moore TS, Christensen M. Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular-mycorrhizae. I. cytokinin increases in the host plant. Candian Journal of Botany. 1980;58:371-374.                
38. Dixon RK, Garret  HE, Cox GS. Cytokinins in the root pressure exudates of Citrus Jambhiri Lush. Colonized by arbuscular mycorrhizae. Tree physiology. 1988; 4:9-18.
39. Torelli A, Trotta  A, Acerbil L, Arcidiacono G, Branca C. IAA and ZR content in leek ( Allium porum L.) as influenced by P nutrition  and arbuscular mycorrhizae , in relation to plant development. Plant and Soil. 2000; 226:29-35.
40. George E. Nutrient uptake. Kapulnick, Y. and Douds, D.D. (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Netherlands. 2000;  pp. 288–307.
41. Ravnskov S, Jakobsen I. Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytologist. 1995;129:61-618.
42. Kaya C, Higgs D, Kirnak H, Tas I. Mycorrhiza colonization improves fruit yield and water use efficiency in watermelon (Citrulls Lanatus Thunb.) growth under well-watered and water- stressed conditions. Plant and soil, 2003;253:287-292.
43. Smith SE, Smith FA, Jakobsen I. Functional diversity in arbuscular mycorrhiza symbiosis: the contribution of the mycorrhiza p uptake pathway is not correlated with mycorrhiza responses in growth or total p uptake. New phytologist. 2004;162:511-524.
44. Flores  E, Frias JM, Herrero A. Photosynthetic nitrate assimilation in cyanobacteria. Photosynthesis Research. 2005; 83:117-133.
45. Alguacil M, Caravaca F, Diaz- Vivancos P, Hernandez JA, Roldan A. Effect of arbuscular mycorrhiza and induced drought stress on antioxidant enzyme and nitrate reductase  activities in Juniperus oxycedrus L. grown in a composted sewage sludge- amended semi-arid soil. Plant and soil. 2006; 279:209-218.
46. Bago B, Pfeffer P, and Shachar-Hill Y. Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytologist. 2001;149:4-8.
47. Cruz C, Egsgaard H, Trujillo C, Ambus P, Requena N, Martins- Loucao. A.M. and Jakobsen, I. Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhiza fungi. Plant physiology. 2007;144:782-729.