Nanobiosensors-their Applications in the Medicinal Plants Industry

Authors

Department of Biotechnology, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran

Abstract

For centuries, herbal drugs have been the only accessible resource for treatment of pain and passions. Today, despite remarkable progress and development of synthetic drugs, medicinal plants and their derived drugs are used massively. So that, in some countries medicinal plants is inseparable from drugs and treatment systems. More ever, their marketing and economical aspects are more flourishing than other chemical drugs. Monitoring of medicinal plant products is necessary in drug industry. There is increasing demand for development of analytical equipments for the production process, from crude materials to final products. In this case, biosensors can be excellent analytical tools in order to analysis of medicinal plants and their products. This review is going to explain nano-biosensor technology briefly and so their potential application in medicinal plant industry. Some of these applications are monitoring of environment and fast identification of pathogens, determination of toxicities, measurement of different types of secondary metabolites, herbal pharmacology and others.

Keywords


1. Kashfi A. Economicrelative advantage of cultivation and trade of medicinal plants in Iran and its value in world markets. Trading reviews. 2010;8:67-78

2. Mozaz R, Pilar M, Maria J, Alda L, Barceló D. Biosensors for environmental applications:Future development trends. J Pure Appl. Chem. 2004;76:723-752.

3. Xue HJ, Ishii A, Aoki K, Ishida S, Koichi M, Shigeaki O. Detection of human adenovirus hexon antigen using carbon nanotube sensors. J Virol Methods. 2011;171: 405-407.

4. Yang M, Kostov Y, Rasooly A. Carbon nanotubes based optical immunodetection of Staphylococcal Enterotoxin B (SEB) in food. J of Food Microbiol. 2008;25:78-83.

5. Liu G, Chen H, Peng H, Song Sh, Gao, Lu J, Ding M, Li L, Ren Sh, Zou Z, Fan Ch. A carbon nanotube-based high-sensitivity electrochemical immunosensor for rapid and portable detection of clenbuterol. J Biosens Bioelectron. 2011;26:308-313.

6. Hye-Mi S, Dong WP, Eun KJ, Yo-Han K, Beom SK, Chong KL, Sun YCh, Sung ChK, Hyunju Ch, Jeong OL. Detection and Titer Estimation of Escherichia coli Using Aptamer-Functionalized Single-Walled Carbon-Nanotube Field-Effect Transistors. J small. 2008;4:197-201.

7. Karaa P, Escosura A, Maltez M, Guixa M, Ozsozb M, Merkoc A. Aptamers based electrochemical biosensor for protein detection using carbon nanotubes platforms. J Biosens Bioelectron. 2010;26:1715-1718.

8.Rohrbach F, Karadeniz H, Erdem A, Famulok M, Mayer G. Label-free impedimetric aptasensor for lysozyme detection based on carbon nanotube-modified screen-printed electrodes. J Anal Biochem. 2012;421:454-459.

9. Keusgen M. Biosensors: new approaches in drug discovery. J Natur. 2002;89:433-444.

10. Kazuhisa S, Kida H, Mukasa K, Matsumoto K. Application of carbon nanotubes for detecting anti-hemagglutinins based on antigen–antibody interaction. J Biosens Bioelectron. 2005;21:201-205.

11. Jiwa R, Moonsub Sh, Yiming L, Woong K, Utz PJ, Hongjie D. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. J of PNAS. 2003;9:4984-4989.

12. Dongjin L, Chander Y, Goyal SM, Cui T. Carbon anotube electric immunoassay for the detection of swine influenza virus H1N1. J Biosens Bioelectron. 2011; 26:3482-3487.

13. Ilangovan R, Dozaz D, Krastanov A, Cench Z, Rio E. Enzyme based biosensor for heavy metal ions determination, J Biotechnol. Eq. 2006;20:184-189.

14. Baghery F. application of optical biosensor for measurement of tropan group alkaloids in the transgenic hairy root extraction of Belladonna plant. MSc thesis, Hamadan: Bu Ali Sina university: 2013.

15. Knecht MR, Sethi M. Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles. J Anal. Bioanal. Chem. 2009;394:33-46.

16. Mello LD, Kubota LT. Biosensors as a tool for the antioxidant status evaluation. J Talanta, 2007;72: 335-348.

17. Rana JS, Jyoti J, Vikas B, Vinod Ch. Utility Biosensors for applications in Agriculture – A Review. J American Sci. 2010; 6:20-42.

18. Bailey J. Cantilever Biosensors: Towards the Magnetic Detection of Viruses. Summer Project. London Centre for Nanotechnology. 2010.

19. Arntz Y, Seelig JD, Lang HP, Zhang J, Hunziker P, Ramseyer JP, Meyer E, Hegner M, Gerber C. Label Free Protein Assay Based on a Nanomechanical Cantilever Array. J Nanotech. 2003;14:86-90.

20. Setterington E, Alocilja E. Electrochemical Biosensor for Rapid and Sensitive Detection of Magnetically Extracted Bacterial Pathogens. J Biosens. 2012;2:15-31.

21. Palchetti I, Mascini M. Electroanalytical biosensors and their potential for food pathogen and toxin detection. J Anal. Bioanal. Chem. 2008;391:455-471.

22. Daniels JS, Pourmand N. Label-free impedance biosensors: Opportunities and challenges. J Electroanal. 2007;19:1239-1257.

22. Rahman M, Kumar P, Park DS, Shim YB. Electrochemical sensors based on organic conjugated polymers. J Sensors. 2008; 8:118-141.

23. Sarno DM, Manohar SK, MacDiarmid AG. Controlled interconversion of semiconducting and metallic forms of polyaniline nanofibers. J of Synth.Met. 2005;148:237-243.

24. Krystofova O, Trnkova L, Adam V, Zehnalek J, Hubalek J, Babula P, Kizek R. Electrochemical Microsensors for the Detection of Cadmium(II) and Lead(II) Ions in Plants. J Biosens. 2010;1:5308-5328.

25. Kwok NY, Dongb S, Loa W. An optical biosensor for multi-sample determination of biochemical oxygen demand (BOD). J Sens Actuat B Chem. 2005; 110:289-298.

26. Claude D, Houssemeddine G, Andriy B, Jean-Marc C. Whole cell algal biosensors for urban waters monitoring, J Novatech. 2007;3:1507-1514.

27. Moorcroft MJ, Davis J, Compton RG. Detection and determination of nitrate and nitrite: A review, J Talanta. 2001;54:785-803.

28. Chen H, Mousty C, Cosni S, Silveira C, Moura JG, Almeida MG. Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH. J Electrochem Commun. 2007;9:2240-2245.

29. Durrieu C, Tran-Minh C. optical algal biosensor using alkalin phosphatase for determination of heavy metals. Ecotoxicol. J Environ Saf. 2002;51:206-209.

30. Rasmussen LD, Sorensen SJ, Turner RR, Barkay T. Application of a lux biosensor for estimating bioavailable mercury in soil. J Soil Biol Biochem. 2000;32:639-646.

31. Krawczynski T, Moszczynska M, Trojanowicz M. Inhibitive determination of mercury and other metal ions by potentiometric urea biosensor. J Biosens Bioelectron. 2000;15:681-691.

32. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R. Advances in biosensors for detection of pathogens in food and water Technol. J Enzyme Microb.2003;32:3-13 .

33. Mcgrath SP, Knight B, Killham K, Preston S, Paton GI. Assessment of the toxicity of metals in soils amended with sewage sludge using a chemical speciation technique and a lux-based biosensor. J Environ Toxicol Chem. 2009;18:659-663.

34. Wong  ES, Chow E, Gooding JJ. The electrochemical detection of cadmium using surfaceimmobilized DNA. J Electrochem Commun. 2007;9:845-849.

35. Bhattacharyay D, Mukhopadhyay A, Sarkar P. The detection of mercury, cadium, and arsenic by the deactivation of urease on rhodinized carbon. J Environ Eng Sci. 2009;26:25-32.

36. Verma N, Singh MA. Bacillus sphaericus based biosensor for monitoring nickel ions in industrial effluents and foods. J Autom Methods Manag Chem. 2006;8:1-4.

37. Sumner JP, Westerberg NM, Stoddard AK, Hurst TK, Cramer M, Thompson RB, Fierke CA, Kopelman R. DsRed as a highly sensitive, selective, and reversible fluorescence-based biosensor for both Cu+ and Cu2+ ions. J Biosens Bioelectron. 2007;21:1302-1308.

38. Simona CL, Sandra AV, Mirela D, Andreia T, Gabriel-Lucian R. Biosensors Applications on Assessment of Reactive Oxygen Species and Antioxidants. J Environ Biosen. 2011;9:12-21.

39. Seçil Ç. Development of biosensors for determination of the total antioxidant capacity. Thesis Submitted to the Graduate School of Engineering and Sciences of ─░zmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE. 2008.

40. Watt K, Nick Ch, Rodney Y. The Detection of Antibacterial Actions of Whole Herb Tinctures using Luminescent Escherichia coli. J Phytother Res. 2007;21:1193-1199.

41. Saify Nabiabad H, Safai N, Amini M. Application of molecular markers in agricultural biotechnology, Guilan. Hagh shenas publisher. 2011.