Phytotoxic Effects of Heavy Metals on Seed Germination and Seedling Growth of Medical Plant, Hyssop (Hyssopus officinalis L.)

Author

Department of Range and Watershed Management, Faculty of Natural Resources, University of Zabol, Zabol, Iran

Abstract

To assess the phytotoxicity of cadmium (Cd), chromium (Cr), copper (Cu), Nickel (Ni) and zinc (Zn) on seed germination and seedling growth of Hyssop (Hyssopus officinalis L.), experiments were performed in different aqueous concentrations (50, 100 and 150μM) of aforementioned heavy metals over the period of 14 sequential days. The results showed that heavy metals adversely affect the normal growth of plants by decreasing seed germination, reducing root and shoot length, and decreasing root and shoot weight. The toxicity effects of chosen heavy metals on seed germination can be organized by the grade order of inhibition as: Cr>Cd>Cu>Ni>Zn. The minimum root and shoot length were observed in Cd (150μM) and Cr (150μM) respectively. The minimum of fresh and dry root weight were recorded at Cd (150μM) and the minimum of fresh and dry shoot weight were observed at Cr (150 μM). These results illustrate a model system for different concentrations of heavy metals for their phytotoxicity effects and also for the seeds’ ability to negate the harmful effects of heavy metals in different types of irrigation waters and soils.

Keywords


1. Jankovasky M, Landa T. Genus Hyssopus L. recent knowledge. J Hortic Sci. 2002;29:119-123.
2. Sharifi-Rad MS, Sharifi-Rad JS. Effects of Abiotic Stress Conditions on Seed Germination and Seedling Growth of Medical Plant, Hyssop (Hyssopus officinalis L.). Int J Agric Crop Sci. 2013;5-21:2593-2597.
3. Kazazi H, Rezaei K, Ghotb-Sharif SJ, Emam-Djomeh Z, Yamini Y. Super criticial fluid extraction of flavors and fragrances from Hyssopus officinalis L.cultivated in Iran. Food Chem. 2007;105:805-811.
4. Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 2010;8:199-216.
5. Temminghoff  EJM, van der Zee SEATM, Dettaan FAM. Copper mobility in a copper- contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environ Sci Tech. 1997;31:1109-1115.
6. Sharma RK, Agrawal M, Marshall FM. Heavy metal (Cu, Zn, Cd, and Pb) contamination of vegetables in Urban India: a case study at Varanasi. Environ Pollut. 2008;154:254-263.
7. Hartmann HT, Kester DE. Plant Propagation, Principle and Practice, 5th Ed., U.S.A, Prentice Hall. 1964;89:115.
8. Meagher RB. Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol. 2000;3:153-162.
9. Davies AG.An assessment of the basis of mercurytolerance in Dunaliella tertiolecta. J Mar Biol Assoc. 1976;56:9-57.
10. Rosko JJ, Rachlin JW. The effect of cadmium, copper, mercury, zinc and lead on cell division, grown and chlorophyll a content of the chlorophyte Chlorella vulgaris. Bull Torrey Bot Club. 1977;104:226-275.
11. Kupper H, Setlik I, Spiller M, Kupper FC,  Prasil O. Heavy metalinduced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol. 2002;38:429-441.
12. Cobbett C,  Goldsbrough  P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol. 2002;53:159-182.
13. Yang MG, Lin XY, Yang XE. Impact of Cd on growth and nutrient accumulation of different plant species. China J App Ecol. 1996;19:89-94.
14. Metwally A, Safronova VI, Bellimov AA,  Dietz KJ. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot. 2005;56:167-178.
15. Huffman EWD, Allaway HW. Chromium in plants: distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. J Agric Food Chem. 1973;21:982-6.
16. Poschenrieder C, Vazquez MD, Bonet A, Barcelo J. Chromium III iron interaction in iron sufficient and iron deficient bean plants. II Ultrastructural aspects. J Plant Nutr. 1991;14:415-428.
17. Barcelo J, Poschenrieder C. Chromium in plants. In: Carati S, Tottarelli F, Seqmi P (eds), Chromium environmental issue, Francotangati Press, Milan. 1997;101-129.
18. Panda SK, Chaudhury I, Khan MH. Heavy metals induce lipid peroxidation and affects antioxidants in wheat leaves. Biol Plant. 2003;46:289-294.
19. Panda SK. Heavy metal phytotoxicity induces oxidative stress in Taxithelium sp. Curr Sci. 2003;84:631-633.
20. Marschner H. Mineral nutrition of higher plants. Academic Press, London. 1995.
21. Raven JA, Evans MCW, Korb RE. The role of trace metals in photosynthetic electron transport in O2- evolving organisms. Photosynth Res. 1999;60:111-149.
22. Van Assche F, Clijsters H. Effects of metals on enzyme activity in plants. Plant Cell Environ. 1990;13:195-206.
23. Eskew DL, Welch RM, Norvell WA. Nickel, an essential micronutrient for legumes and possibly all higher plants. Sci. 1983;222:621-623.
24. Brown PH, Welch RM, Cary EE. Nickel: A micronutrient essential for higher plants. Plant Physiol. 1987;85:801-803.
25. Ragsdale SW. Nickel biochemistry. Curr Opin Chem Biol. 1998;2:208-215.
26. Nieminen TM, Ukonmaanaho L, Rausch N, Shotyk W. Biogeochemistry of nickel and its release into the environment. Met Ions Life Sci. 2007;2:1-30.
27. Alloway BJ. Heavy Metal in Soils (Ed: B. J. Alloway), 2nd ed., Blackie Academic and Professional, London. 1995; 25-34.
28. Salt DE, Krämer U, Smith RD, Raskin I. The role of root exudates in nickel hyper accumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Terry N, Bañuelos G. (Ed.). Phytoremediation of contaminated soil and water. Boca Raton: Lewis Publishers. 2000;189-200.
29. Molas J. Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni (II) complexes. Environ Exp Bot. 2002;47:115-126.
30. Gajewska E, Sklodowska M, Slaba  M, Mazur  J. Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant. 2006;50:653-659.
31. Madhava Rao KV, Sresty TV. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 2000;157:113–128.
32. Duarte B, Delgado M, Caador I. The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides, Chemosphere. 2007;69:836-840.
33. Shier WT. Metals as toxins in plants. J Toxicol Toxin Rev. 1994;13:205-216.
34. Welch RM. Micronutrient nutrition of plants. Critical Review. Plant Sci. 1995;14:49-82.
35. Mirshekali H, Hadi H, Amirnia R, Khodaverdiloo H. Effect of zinc toxicity on plant productivity, chlorophyll and zn contents of sorghum (sorghum bicolor) and common lambsquarter (chenopodium album). Int J Agric Res Rev. 2012;2:247-254.
36. Collins JC. Zinc, in: Lepp, N.W. (Ed.), The Effect of Heavy Metal Pollution on Plants, App Sci Pub, London. 1981;145-170.
37. Peixoto PHP, Cambraia J, Sant Anna R, Mosquim PR, Moreira MA. Aluminium effects on fatty acid composition and lipid peroxidation of a purified plasma membrane fraction of root apices of two sorghum cultivars. J Plant Nutr. 2001;24:1061-1070.
38. Zhang  XZ. The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. In: Zhang XZ (ed) Research methodology of crop physiology. Agr Press, Beijing. 1992;208-211.
39. Knasmuller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A. Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutat Res. 1998;420:37-48.
40. Baudouin C, Charveron M, Tarrouse R, Gall Y. Environmental pollutants and skin cancer. Cell Biol Toxicol. 2002;18:341-348.
41. Fisher NS, Jones GJ, Nelson DM. Effect of copper and zinc on growth, morphology and metabolism of Asterionella japonica (Cleve). J Exp Biol Ecol. 1981;51:37–56.
42. Morzeck JRE, Funicelli NA. Effect of Zn and Pb on germination of sportama alterniflora loisel seeda at various salinities. Environ Exp Bot. 1982;22:23-32.
43. ISTA. International Seed Testing Association. Proc Inter Seed Testing Assoc. 1966;31:1-152.
44. Singh KP, Singh K. Stress Physiological studies on seed germination and seedling growth of source wheat hybrids. Indian J Physiol. 1981;24:180-186.
45. Tangahu BV,  Abdullah SRS, Basri H,  Idris M, Anuar N, Mukhlisin M. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int J Chem Eng. 2011:31.
46. Athar R, Ahmad M. Heavy Metal Toxicity: Effect on Plant Growth and Metal Uptake by Wheat, and on Free Living Azotobacter. Water Air Soil Poll. 2002;138:165-180.
47. Jamal SN, Iqbal MZ, Athar M. Phytotoxic effect of aluminum and chromium on the germination and early growth of wheat (Triticum aestivum) varieties Anmol and Kiran. Int J Environ Sci Tech. 2006;3:411-416.
48. Bhardwaj P, Chaturvedi AK, Prasad P. Effect of Enhanced Lead and Cadmium in soil on Physiological and Biochemical attributes of Phaseolus vulgaris L. Nat Sci. 2009;7:63-75.
49. Asgharipour MR, Khatamipour M, Razavi-Omrani M. Phytotoxicity of Cadmium on Seed Germination, Early Growth, Proline and Carbohydrate Content in Two Wheat Varieties.Adv Environ Biol. 2011;5: 559-565.
50. Datta JK, Bandhyopadhyay A, Banerjee A, Mondal NK. Phytotoxic effect of chromium on the germination, seedling growth of some wheat (Triticum aestivum L.) cultivars under laboratory condition. J Agric Technol. 2011;7:395-402.
51. Abraham K, Sridevi R, Suresh B, Damodharam T. Effect of heavy metals (Cd, Pb, Cu) on seed germination of Arachis hypogeae. L. Asian J Plant Sci. 2013;3:10-12.
52. Breckle SW, Kahle H. Effect of toxic heavy metals (Cd, Ph) on growth and mineral nutrition of beech (Fagus sylvatica L.). Vegetation. 1992;101:43-53.
53. Hatamzadeh A,  Noroozi Sharaf AR, Vafaei MH, Salehi M, Ahmadi G. Effect of some heavy metals (Fe, Cu and Pb) on seed germination and incipient seedling growth of Festuca rubra ssp. commutate (Chewings fescue). Int J Agric Crop Sci. 2012;4:1068-1073.
54. Subin MP, Francis S. Phytotoxic Effects of Cadmium on Seed Germination, Early Seedling Growth and Antioxidant Enzyme Activities in Cucurbita maxima Duchesne. Int Res J Biol Sci. 2013;2:40-47.
55. Oncel I, Kele Y, Ustun AS. Interactive Effects of Temperature and Heavy Metal Stress on the Growth and Some Biochemical Compounds in Wheat Seedlings. Environ Pollut. 2000;107:315-320.
56. Neelima P, Reddy KJ. Differential effect of cadmium and mercury on growth and metabolism of Solanum melongena L. seedlings. J Environ Biol. 2003;24:453-60.
57. Shafiq M, Zafar IM, Athar M. Effect of lead and cadmium on germination and seedling growth of Leucaena leucocephala. J Appl Sci Environ Manage. 2008;12:61- 66.
58. Heidari M, Sarani S. Effects of lead and cadmium on seed germination, seedling growth and antioxidant enzymes activities of Mustard (Sinapis arvensis L.). ARPN J Agric Biol Sci. 2011;6:44-47.
59. Nasr N. Germination and seedling growth of maize (Zea mays L.) seeds in toxicity of aluminum and nickel. Merit Res J Environ Sci Toxic. 2013;1:110-113.
60. Padmaja K, Prasad DDK, Prasad ARK. Inhibition of chlorophyll synthesis in Phaseolus vulgaris Seedlings by cadmium acetate. Photosynthetica. 1990;24:399-405.
61. Kabir M, Iqbal MZ, Shafiq M, Farooqi ZR. Reduction in germination and seedling growth of Thespesia populnea L., caused by lead and cadmium treatments. Pak J Bot. 2008;40:2419-2426.
62. Ebbs SD, Kochian LV. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual. 1997;26:776–781.
63. Cakmak I, Marshner H. Effect of zinc nutritional status on superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. In: BarrowNJ (ed) Plant nutrition-from genetic engineering field practice. Kluwer, The Netherlanads. 1993;133–137.
64. Choi JM, Pak CH, Lee CW. Micronutrient toxicity in French marigold. J Plant Nutri. 1996;19:901–916.
65. Fontes RLS, Cox FR. Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutri. 1998;21:1723–1730.
66. Naz A, Khan S, Qasim M, Khalid S, Muhammad S, Tariq M. Metals toxicity and its bioaccumulation in purslane seedlings grown in controlled environment. Nat Sci. 2013;5:573-579.
67. Shaikh IR, Shaikh PR, Shaikh RA, Shaikh AA. Phytotoxic effects of Heavy metals (Cr, Cd, Mn and Zn) on Wheat (Triticum aestivum L.) Seed Germination and Seedlings growth in Black Cotton Soil of Nanded, India. Res J Chem Sci. 2013;3:14-23.