Total Phenolic and Flavonoids Contents, Radical Scavenging Activity and Green Synthesis of Silver Nanoparticles by Laurus nobilis L. Leaves Aqueous Extract


Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran


In this project, total phenolic and flavonoid contents of the aqueous extract of Laurus nobilis L. leaves were evaluated by colorimetric methods. These natural products which are found in plants extracts, can be considered as reducing and stabilizing agents in the synthesis of metal nanoparticles. Regarding to high amounts of these compounds in the extract, silver nanoparticles were synthesized by aqueous extract of Laurus nobilis L. leaves through a simple and eco-friendly route. Characterizations of nanoparticles were evaluated by using Ultra Violet-Visible spectroscopy (UV-Vis), Fourier Transform Infra-Red spectroscopy (FT-IR), X-Ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). XRD analysis confirmed the crystalline nature of nanoparticles and the average size of synthesized silver nanoparticles were found 19.65±13.49 (nm) by TEM analysis. Radical scavenging activity of the extract and silver nanoparticles were also evaluated by DPPH (1,1-Diphenyl-2-picrylhedrazyl) assay. The extract showed the best results in comparison with silver nanoparticles and BHT (Butylated Hydroxyl Toluene) as a reference antioxidant.


1. Ouchikh O, Chahed T, Ksouri R, Taarit MB, Faleh H, Abdelly C, Kchouk ME, Marzouk B. The effects of extraction method on the measured tocopherol level and antioxidant activity of L. nobilis vegetative organs. J Food Compos Anal. 2011;24:103-110.

2. Ferreira A, Proenca C, Serralheiro MLM, Araujo MEM.  The in vitro screening of acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J Ethnopharmacol. 2006;108:31-37.

3. Conforti F, Statti G, Uzunov D, Menichinia F. Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. Piperitum (Ucria) Coutinho seeds. Biol Pharm Bull. 2006;29:2056-2064.

4. Ozcan B, Esen M, Sangun MK, Coleri A, Caliskan M. Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil. J Environ Biol. 2010;31:637-641.

5. Speroni E, Cervellati R, Dall'Acqua S, Guerra MC, Greco E, Govoni P, Innocenti G. Gastro protective effect and antioxidant properties of different Laurus nobilis L. leaf extracts.  J Med Food. 2011;14,:499-504.

6. Ramose C, Teixeira B, Batista I, Matos O, Serrano C, Nege NR, Nogueira JMF, Nunes ML, Marques M. Antioxidant and antibacterial activity of essential oil and extracts of Bay leave Laurus nobilis Linnaeus (Lauraceae) from Portugal. Nat Prod Res. 2012;6:518-529.   

7. Kumar V, Yadav SC, Yadav SK, Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J Chem Technol Biotechnol. 2015;85:1301-9.

8. Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine. 2010;6:257-262.

9. Rai M, Yadav A, Gade A. Current trends in phytosynthesis of metal nanoparticeles. Crit Rev Biotechnol. 2008;28:277-284.

10. Park Y, Hing YN, Weyers A, Kim YS, Linhardt RJ. Polysaccharide and phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles. IET nanobiotechnol. 2011;5:69-78.

11. Shankar SS, Ahmad A, pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungusyields gold nanoparticles of different shapes. J Mater Chem. 2003;13:1822-1826.

12. Shankar SS, Raj A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au Core-Ag shell nanoparticles using neem (Azadira chtaindica) leaf broth. J Colloid Interf Sci.2004;275:496-502.

13. Rautaray D, Sanyal A, Bharde A, Ahmad A, Sastry M. Biological synthesis of stable vat rite crystals by the reaction of calcium ions with germinating chickpea seeds. Cryst Growth Des. 2005;5:399-402.

14. Das R, Gang S, Nath SS. Preparation and Antibacterial Activity of Silver Nanoparticles. J Biomat Nanobiotech. 2011;2:472-475 

15. Sadeghi B, Jamali M, Kia S, Amini nia A, Ghafari S. Synthesis and characterization of silver nanoparticles for antibacterial activity. Int J Nano Dim. 2010;1:119-124.     

16. Thilagavathi T, Kathirav G, Srinivasan K. Antioxidant activity and synthesis of Silver nanoparticles using the leaf extract of Limonia acidissima. Int J Pharm Bio Sci. 2016;7(4):201-205.

17. Mohanta YK, Panda SK,Jayabalan R,Sharma N, Bastia AK, Mohanta TK. Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of Erythrina suberosa (Roxb.) Front Mol Biosci. 2017;4:14.

18. Goodarzi V, Zamani H, Bajuli L, Moradshah A. Evaluation of antioxidant potential and reduction capacity of some plant extracts in silver nanoparticle synthesis. Mol Biol Res Commun. 2014;3:165-174.

19. Muthu K, Priya S. Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction, Spectrochim Acta A. 2017;179:66-72.

20. Liz-Mazan LM, Lado-Tourino I. Reduction and Stabilization of Silver Nanoparticles in Ethanol by Nonionic Surfactants. Langmuir. 1996;12:3585-3589.

21. Esumi K, Tano T, Torigoe K, Meguro K. Preparation and Characterization of Bimetallic Pd-Cu Colloids by Thermal Decomposition of Their Acetate Compounds in organic Solvents. J Chem Mater. 1990;2:564-567.

22. Pileni MP. Fabrication and Physical Properties of Self-Organized Siler Nanocrystals. Pure Appl Chem. 2000;72:53-65.

23. Henglein A. Physicochemical Properties of Small Metal Particles in Solution: Microelectrode Reaction, Chemisorption, Composite Metal Particles, and the Atom-to-Metal Transition. J Phys Chem B. 1993;97:5457-5471.

24. Oliveira I, Sousa A, Ferreira I, Bento A, Estevinho L, Pereira JA. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem Toxicol. 2008;46:2326-2331.

25. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in Propolis by two complementary colorimetric methods.Ann Mat Pur Appl. 2002;10:178-182.

26. Bondet V, Brand-Williams W, Berset C. Kinetics and Mechanisms of Antioxidant Activity Using the DPPH Free Radical Method. Lebensmittel-Wissenschaft und-Technologie-Food Sci Technol. 1997;30:609-15.

27. Shan B, Yizhong Z, Sun M, Corke H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem. 2015;53:7749-7759.

28. Szydlowska- Czerniak A, Amarowicz R, Szlyk E. Antioxidant capacity of rapeseed meal and rapeseed oils enriched with meal extract. Eur J Lipid Sci Technol. 2010;112:750-760.

29. Muniz-Marquez DB, Rodriguez R, Balagurusamy N, Carrillo ML, Belmares R, Contreras JC, Nevarez GV, Aguilar CN. Phenolic content and antioxidant capacity of extracts of Laurus nobilis L., Coriandrum sativum L. and Amaranthus hybridus L. CYTA-J Food. 2014;12:271-276.

30. Khalil MMH, Mahmoud II, Hamed MOA. Green synthesis of gold nanoparticles using Laurus nobilis L. leaf extract and its antimicrobial activity. Int J Green Herb Chem. 2015;4:265-279.

31. Subramanian R, Subbramaniyan P, Raj V. Antioxidant activity of the stem bark of Shorea roxburghii and its silver reducing power. Springer Plus. 2013;2:28.

32. Begum NA, Mondal S, Basu S, Laskar RA, Mandal D. Biogenetic synthesis of Au and Ag nanoparticles using aqueous solution of black tea leaf extracts. Colloids Surf B. 2009;71:113-118.

33. Ahmad N, Sharma S. Green synthesis of silver nanoparticles using extracts of Anana comosus. Green Sustain Chem. 2012;2:141-147.

34. Kapoor S. Preparation, Characterization and surface modification of silver particles.  Ann Mat Pura Appl. 1998; 14:1021-1025.

35. Schneider S, Halbig P, Grau H, Nickel U. Reproducible preparation of silver sols with uniform particle size for application in surface enhanced Raman Spectroscopy. Photochem Photobiol. 1994;60:605-610.

36. Thilagam M, Tamilselvi A, Chandrasekeran B, Rose C. Phytosynthesis of Silver nanoparticles using medical and dye yielding plant of Bixa orenalla L. leaf extract. J Pharm Sci Innov. 2013;2:9-13.