Genetic Diversity Assessment Between Different Populations of Moringa peregrina (Forssk.) Fiori and Moringa oleifera Lam. in Iran using RAPD, ISSR and R-ISSR Markers.

Authors

1 Department of Horticulture, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Research Institute of Forests and Rangelands (Biotechnology Department), Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran

Abstract

The present study was conducted to investigate genetic diversity between and within of six populations with different individual numbers of cultivated and non-cultivated provenances of  Moringa peregrina (Forssk.) Fiori and Moringa oleifera Lam. using RAPD, ISSR and various combinations of RAPD and ISSR primers in one multiplex PCR (R-ISSR). 10 primers that produced clear and reproducible fragments after screening of 30 primers were selected for further analysis. A set of 10 primers generated 96 bands ranging in size from 150 to 1600 bp, corresponding to an average of 16 bands per primer and out of which 100 % were polymorphic among 26 individuals.  The PIC values ranged from 0.16 to 0.31 and MI values ranged from 2.16 to 4.65 per primer. The primer R-ISSR (H876+A17) had the highest PIC (0.31) and MI (4.65) values. A maximum and minimum genetic similarity values were observed between populations (I and V) in M. oleifera (0.98) and populations (III and IV) in M. peregrina (0.52) respectively. The Gst value was 0.7, indicating that 61% of the genetic diversity resided within the populations. Clustering analysis using average algorithm based on Nei's unbiased genetic distance, classified the Moringa Adans. populations into five major groups. The PCOA data confirmed the results of clustering. The results of this study revealed that R-ISSR markers could be efficiently used for genetic differentiation of the Moringa individuals. The primers used in this article are useful to detection of a high level of polymorphism and it can be used to guide future breeding studies and management of Moringa genus.

Keywords


1. Mridha MAU. Prospects of Moringa cultivation in Saudi Arabia. J Appl Environ Biol Sci. 2015;5:39-46.
2. Lalas S, Gortzi O, Athanasiadis V, Tsaknis J, Chinou I. Determination of antimicrobial activity and resistance to oxidation of Moringa peregrina seed oil. Molecules. 2012;17:2330-2334.
3. Steinitz B, TabibY, Gaba V, Gefen T, Vaknin Y. Vegetative micro-cloning to sustain biodiversity of threatened Moringa species. In vitro Cell Dev Biol Plant. 2009;45:65-71.
4. Gomma NH, Pico FX. Seed germination, seedling traits, and bank of the tree Moringa peregrina (Moringaceae) in a hyper-arid environment. Am J Bot. 2011;98:1024-1030.
5. Abdellatef E, Khalafalla M. In vitro morphogenesis studies on Moringa oleifera L. an important medicinal tree. Int J Medicobiol Res. 2010;1:85-89.
6. Siddhuraju P, Becker K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J Agric Food Chem. 2003;51:2144-2155.
7. Awodele O, Adekunle OI, Saidi O, Teixeira da Silva JA, Oluseye OV. Toxicological evaluation of the aqueous leaf extract of Moringa oleifera Lam. (Moringaceae). J Ethnopharmacol. 2012;139:330-336.
8. Muluvi GM, Sprent JI, Soranzo N, Provan J, Odee D, Folkard G, McNicol JW, Powell W. Amplified fragment length polymorphism (AFLP) analysis of genetic variation in Moringa oleifera Lam. Mol Ecol. 1999;8:463-470.
9. Mgendi MG, Manoko MK, Nyomora AM. Genetic diversity between cultivated and non-cultivated Moringa oleifera Lam. provenances assessed by RAPD markers. J Cell Mol Biol. 2010;8:95-102.
10. Cruz da Silva AV, Ferrera dos Santos AR, Ledo A, Feitosa RB, Almelda CS, Melo da-Silva G, Range MSA. Moringa genetic diversity from germplasm bank using RAPD markers. Tropical and Subtropical Agroecosystems. 2012;15:31-39.
11. Abubakar BY, Wusirika R, Muazu S, Khan AU, Adamu AK. Detection of Genetic Variability using Random Amplified Polymorphic DNA markers in Some Accessions of Moringa oleifera Lam. from Northern Nigeria.Int J Botany. 2011;7:237-242.
12. Ganesan SK, Singh R, Choudhury DR, Bharadwaj J, Gupta V, Singode A. Genetic diversity and population structure study of drumstick (Moringa oleifera Lam.) using morphological and SSR markers. Ind Crops Prod. 2014;60:316-325. doi:10.1016/j.indcrop.2014.06.033
13. Saini RK, Saad KR, Ravishankar GA, Giridhar P, Shetty NP. Genetic diversity of commercially grown Moringa oleifera Lam. cultivars from India by RAPD, ISSR and cytochrome P450-based markers. Plant Syst Evol. 2013;299:1205-1213. Doi: 10.1007/s00606-013-0789-7
14. Wu JC, Yang J, Gu ZJ, Zhang YP. Isolation and characterization of twenty polymorphic microsatellite loci for Moringa oleifera (Moringaceae). Hort Science. 2010;45:690-692.
15. Alaklabi A. Genetic diversity of Moringa peregrina species in Saudi Arabia with ITS sequences. Saudi J BiolSci. 2015;22:186-190. Doi: 10.1016/ j.sjbs.2014.09.015
16. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11-15.
17. Milbourne D, Meyer RC, Bradshaw JE, Baird E, Bonar N, Provan J, Powell W, Waugh R. Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol  Breed. 1997;3:127-136.
18. Roldan-ruiz I, Dendauw J, Van bockstaele E, Depicker A, De loose M. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding. 2000;6:125-134.
19. Yeh FC, Yang RCB, Timothy BJ, Ye ZH, Mao JX. POPGENE software. Molecular Biology and Biotechnology Centre. University of Alberta, Canada. 1997.
20. Peakall R, Smouse PE.  Genalex 6.5: genetic analysis in Excel. Australian National University, Canberra, Australia. 2006.
21. Nei  M. Genetic distance between populations. Amer. Naturalist. 1972;106:283-92.
22. SAS SAS. Institute Inc, Cary; NC 27513, USA. 1996.
23. Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci. USA. 1973;70:3321-3323.
24. Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479-491.
25. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1987;83:583-590.
26. Muluvi GM, Sprent JI, Ode D, Powell W. Estimates of out-crossing rates in Moringa oleifera using Amplified fragment length polymorphism (AFLP). Afr J Biotech. 2004;3:145-151.
27. Kameli M, Hesamzadeh Hejazi  SM, Ebadi M. Assessment of genetic diversity on populations of three satureja species in Iran using ISSR markers. Ann Biol Res. 2013;4:64-72.
28. Rufai S, Hanafi MM, Rafii MY, Ahmad S, Arolu IW, Ferdous J. Genetic Dissection of New Genotypes of Drumstick Tree (Moringa oleifera Lam.) Using Random Amplified Polymorphic DNA Marker. Bio Med Research International. Article ID 604598,6 pages. 2013.
29. Shahzad U, Khan MA, Jaskani MJ, Khan IA, Korban SS. Genetic diversity and population structure of Moringa oleifera. Conservation Genetics. 2013;14:1161-1172.
30. Hassanein AMA. Nutritional, chemical and molecular characterisation of Moringa oleifera Lam. and Moringa peregrina (Forssk.) Fiori genotypes. J Hortic Sci. Biotechnol. 2017;1-10.
Doi: 10.1080/14620316.2017.1399834
31. Smolik M. R-ISSR - Tool for Generation of a New Type of Products, Applied for the Identification of Putative Molecular Marker Linked to QTL Determined Tolerance to Nutrient Deprivation Stress in Rye (Secale cereale L.).Not Bot Horti. Agrobo. 2012;40:238-246
32. Smolik M. R-ISSR, For Fingerprinting, Mapping and Identification of New Genomic Loci in Rye (Secale cereale L.). Russ. J Genet. 2013;49:187-195.