Essential Oil Profile Changes of Three Thymus Species under Nanoparticle Treatments

Document Type : Research Paper

Authors

1 Department of Horticultural Science and Landscape Engineering, Faculty of Agriculture, Malayer University, Malayer, Iran

2 Department of Nature Engineering, Faculty of Natural Resources and Environmental Science, Malayer University, Malayer, Iran

Abstract

Nanoparticles (NPs) have received much attention recently in various areas of industry, biomedical, and agricultural sectors worldwide. It is important to recognize the consequences of the use and application of NPs and their interaction with ecosystems components including plants, whether in the environmental area or in physiology and crop production. The present study aimed to investigate the changes in essential oil content and composition of Thymus daenensis Celak., Thymus fedtschenkoi Ronniger and Thymus vulgaris L. under silver nanoparticles (AgNPs) and silicon nanoparticles (SiNPs) in four levels (0, 30, 60, 100 ppm). The essential oil content increased at all stress levels and in all three species. The amount of monoterpene hydrocarbons in T. fedtschenkoi increased, while it decreased in other two species. The amount of sesquiterpentes, except for oxygenated sesquiterpenes in T. daenensis, increased slightly. Compared to other factors, the type of plant species was more determinative in response to treatments. Overall, both AgNPs and SiNps treatments had a distinct effect. However, no interpretable results were observed between the different levels of both treatments.

Keywords


1. Capaldi Arruda SC, Diniz Silva AL, Moretto Galazzi R, Antunes Azevedo R, Zezzi Arruda MA. Nanoparticles applied to plant science: A review, Talanta. 2015;131:693-705.
2. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H. Small particles, big impacts: A review of the diverse applications of nanofluids, J Appl Phys. 2013;113:11301-11319.
3. Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E, Rodrigo-García J, Morales MI, Osuna-Avila P, Niu G, Hernandez-Viezcas JA, Gardea-Torresdey JL. Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiol Biochem. 2014;84:277-285.
4. Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui Z.H. Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem. 2017;110:194-209.
5. Ma X, Geiser-Lee J, Deng Y, Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci Total Environ. 2010;408:3053-3061.
6. Zhu H, Han J, Xiao JQ, Jin Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit. 2008;10:713-717.
7. Navarro E, Baun A, Behra R, Hartmann N.B, Filser J, Miao A.J, Quigg A, Santschi P.H, Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17:372-386.
8. Seeger EM, Baun A, Kästner M, Trapp S. Insignificant acute toxicity of TiO2 nanoparticles to willow trees. J Soils Sediments. 2009;9:46-53.
9. Thuesombat P, Hannongbua S, Akasit S, Chadchawan S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth, Ecotoxicol. Environ Saf. 2014;104:302-309.
10. Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z. Effects of rare earth oxide nanoparticles on root elongation of plants, Chemosphere. 2010;78:273-279.
11. Rizwan M, Ali S, Qayyum M.F, Adrees M, Ibrahim M, Zia-ur-Rehman M, Farid M, Abbas F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review, J Hazard Mater. 322;2017:2-16.
12. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and crop protection: A review, Crop Prot. 2012;35:64-70.
13. Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas J.A, Bonilla-Bird N, López-Moreno M.L, Komárek M, Peralta-Videa J.R, Gardea-Torresdey J.L. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review, Plant Physiol Biochem. 2017;110:236-264.
14. Mateos-Naranjo E, Andrades-Moreno L, Davy AJ. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol Biochem. 2013;63:115-121.
15. Zhang W, Yu X, Li M, Lang D, Zhang X, Xie Z. Silicon promotes growth and root yield of Glycyrrhiza uralensis under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism. Crop Prot. 2018;107:1-11.
16. Anselmann R, Nanoparticles and Nanolayers In Commercial Applications, J. Nanoparticle Res. 2001;3:329-336.
17. Meyer DE, Curran MA, Gonzalez MA. An Examination of Existing Data for the Industrial Manufacture and Use of Nanocomponents and Their Role in the Life Cycle Impact of Nanoproducts. Environ Sci Technol. 2009;43:1256-1263.
18. Kalteh M, Alipour ZT, Ashraf S, Marashi Aliabadi M, Falah  Nosratabadi A. Effect of silica Nanoparticles on Basil (Ocimum basilicum) Under Salinity Stress. J Chem Heal Risks. 2018;4.
19. Rezaei R, Hoseini SM, Shabanali Fami H, Safa L, Identification and analysis of barriers in the development of nanotechnology in Iran agriculture sector from the researchers point of view. Sci Technol Policy. 2010;2:17-26.
20. Davies NW. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J Chromatogr A. 1990;503:1-24.
21. Shibamoto T, Retention indices in essential oil analysis. In: Sandra P, Bicchi C (eds.) Capill. Gas Chromatogr. Essent. Oil Anal., Alfred Heuthig-Verlag, New York, 1987, pp. 259-275.
22. Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry, 4th ed., Allured publishing corporation Carol Stream, Illinois, USA. 2007.
23. Stenhagen E, Abrahamsson S, McLafferty F.W, Registry of mass spectral data. 1974.
24. Dietz KJ, Herth S. Plant nanotoxicology. Trends Plant Sci. 2011;16:582-589.
25. Gondim Filho H, Petterson CCS, Gomes da Silva M, Mourato Pereira M, Tales M.S, André D. de A.N, Rafael S.V, Raj Gheyi H. Growth, Production and Essential Oil Content of Basil Genotypes in Hydroponic Conditions under Salt Stress. J Exp Agric Int. 2018;25:1-10.
26. Lung I, Soran ML, Opriş O, Truşcă MRC, Niinemets Ü, Copolovici L, Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum. Sci. Total Environ. 2016;569-570:489-495.
27. Shayganfar A, Azizi M, Rasouli M. Various strategies elicited and modulated by elevated UV-B radiation and protectant compounds in Thymus species: Differences in response over treatments, acclimation and interaction. Ind. Crops Prod. 2018;113:298-307.
28. Palmer-Young EC, Veit, D. Gershenzon J, Schuman MC. The sesquiterpenes(E)-β-farnesene and (E)-α-bergamotene quench ozone but fail to protect the wild tobacco Nicotiana attenuata from ozone, UVB, and drought stresses, PLoS One. 2015;10.
29. Copolovici L, Kännaste A, Pazouki L, Niinemets Ü. Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J. Plant Physiol. 2012;169:664-672.
30. Copolovici L, Niinemets Ü. Temperature dependencies of Henry’s law constants for different plant sesquiterpenes. Chemosphere. 2015;138:751-757.