Photocatalytic Activity of Titanium Dioxide Nanoparticles (TiO2) on the Physiological and Phytochemical Properties of Stevia [Stevia rebaudiana (Bertoni) Bertoni]

Document Type : Research Paper

Authors

1 Plant Biology Group, Damghan Azad University, Damghan, Iran

2 Plant Biology Group, Tehran North Branch, Islamic Azad University, Iran

3 Chemistry Group, Damghan Azad University, Damghan, Iran

4 Biology department, Sana Institute of Higher Education, Sari, Iran

5 Plant Biology group, Urmia University, Urmia, Iran

Abstract

This study investigated the photocatalytic effect of titanium dioxide nanoparticles on some physiological and phytochemical properties of stevia plant. Stevia plant was treated with eight concentrations of titanium dioxide nanoparticles (0, 20, 40, 60, 80, 100, 200 and 400 µL/L). After 3 weeks of plants treatment, samples were collected for analysis of chlorophyll, PAL enzyme activity, total phenol and flavonoid content. Also extraction of plant for assessment of steviosides and rebaudiosides glycosides by HPLC was performed. The results showed that treatment of titanium dioxide nanoparticles at 400 µL/Lconcentration had the highest and at control had the lowest effect on chlorophyll content of leaves, total phenol, total flavonoid and Phenylalanine ammonia lyase enzyme activity. Glycoside content showed that treatment of nanoparticle at 200 µL/L concentration had the highest and control concentration had lowest effect on stevioside content. Rebaudiosides content showed that, nanoparticle at 400 µL/L had highest effect and at 20 and 40 µL/L had lowest effect on rebaudioside A and B content. But, nanoparticle at 80 µL/L had maximum effect, and at 20 and 40 µL/L had lowest effect on rebaudioside C and F content. It was concluded that varied concentration of nanoparticles has different effect on glycosides content that this results could apply for further technologies in agriculture industry.

Keywords


  1. Humphrey TV, Richman AS, Menassa R, Jim E. Spatial organization of four enzymes from S. rebaudiana Bertoni that are involved in steviol glycoside synthesis. Plant Mol Biol. 2006;61:47-62.
  2. Karuppusamy S. A review on trends in production of secondary metabolites from higher plants by invitro tissue. Organ and cell cultures. J Med Plants. 2009;3:1222-1239.
  3. Abdullah R, Alizah Z, Wee WH, Leaw CL, Yeap CB. Immature embryo: A useful tool for oil palm (Elaeis guineensis Jacq.) genetic transformation studies. Electron J Biotechnol. 2005;74:25-34.
  4. Rita MH. Stevia Nature's Sweeteners. Woodland Publishing Inc, (Web article. 1997:1-29.
  5. Ramesh K, Singh V, Megeji NW. Cultivation of S. rebaudiana (BERT). Bertoni comprehensive review. Adv Agron. 2006;89:137-177.
  6. Nanotechnology-Specialist-Headquarters. Complementary document future strategy (Ten Years Strategy of Nanotechnology Development in the Islamic Republic of Iran) .http://www.nano.ir 5. 2005.
  7. Johnson, A. 2005. Agriculture and nanotechnology. Available in: http://www.tahan.com/chalie/nanosociety/course201.
  8. Mingyu S, Hong F, Liu C, Wu X, Liu X, Chen L. Effects of nano-anatase TiO2 on absorption, distribution of light and photo reduction activities of chloroplast membrane of spinach. Biol. Trace Elem. Res. 2007;118:120-130.
  9. Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace Elem Res. 2006;110:179-190.
  10. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Sakthi Kumar D. Nano particulate material delivery to plants, Plant Sci. 2010;179:154-163.
  11. Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P. Effects of Nano-TiO2 on photochemical reaction of chloroplasts of Spinach. Biol. Trace Elem. Res. 2005;105:269-279.
  12. Mandeh M, Omidi M, Rahaie M. In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biol Trace Elem Res. 2012;150:376-80.
  13. Gao F, Chao L, Zheng L, Mingyu S, Xiao W, Yang F, Cheng W, Ping Y. Mechanism of nano anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem. Res. 2006;111:239-245.
  14. Ding Z, Lu GQ, Green field PF. Role of crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J. Phys. Chem. B. 2000;104:4815-4820.
  15. Duffy EF, Touati FA, Kehoe SC. A novel TiO2-assisted solar photocatalytic batch process disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in development countries. Sol Energy. 2004;77:649-655.
  16. Frazer L. Titanium dioxide environmental knight? Environmental Health. Environ Health Perspect. 2001; 109: A174-A177.
  17. Arnon DI. Copper enzymes in isolated chloroplast polyphenol oxide in beta vulgaris. Plant Physiol. 1949;24:1-5.
  18. Chang CC, Yang MH, Wen HM, Chern J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10:178-182.
  1. McDonald S, Prenzler PD, Autolovich M, Robards K. Radical scavenging, antioxidant and antioxidant activity of olive extracts. Food Chem. 2001;73:73-84.
  2. Vaughn KC & DUKE SO. Function of polyphenoloxidase in higher plants. Physiol Planta. 1984;60:106-112.
  3. Mamta PR, Vijaylata P, Arvind G, Bikram S, Ravinde KB Rupinder T, Stimulatory effect of phosphate-solubilizing bacteria on plant growth. Stevioside and rebaudioside-A contents of S. rebaudiana Bertoni. Appl Soil Ecol. 2010;46:222-229
  4. Owolade O, Ogunleti DO, Adenekan M. Titanium dioxide affects diseases, development and yield of edible cowpea. J Environ Agric Food Chem. 2008;7:2942-2947.
  5. Yang F, Liu C, Gao FQ, Su MY, Wu X, Zheng L, Hong FS, Yang P. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res. 2007;119:77-88.
  6. Mishra P, Singh R, Kumar U, Prakash V. S. rebaudiana A magical sweetener. GJBBR. 2010;5:62-74.
  7. Nonami H, Wu Y, Matthewse MA. Decreased growth-induced water potential a primary cause of growth inhibition at low water potentials. Plant physiol. 2010;114:501-509.
  8. Hashemi-Dehkordi A, Mousavi M, Moalemi N, Ghafarian-Moghareb MH. Effect of Titanium Dioxide (Anatase) Nanoparticles on Physiological Characteristics of Strawberry in Fragaria ananassa c.v.Queen Elisa under Hydroponic Cultures. Plant Proc Func. 2016;5:79-71.
  9. Martínez-Sánchez FM, Nunez A, Amoros J, Gimenez CF. Effect of titanium leaf spray treatments on ascorbic acid levels of Capsicum annuum L. fruits. J. Plant Nutr. 2010;16:975-981.
  10. Kamalizadeh M, Bihamta MR, Peghambari SA, Hadian J. Effect of different levels of Titanium Dioxide (TiO2) nanoparticles on two important phenolic compounds in Dracocephalum moldavica L. J Res Iranian Herb Flow. 2015;31:435-428.
  11. Bagal UR, Leebens Mack JH, Walter Lorenz W, Dean JFD. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm specific line age. BMC Genoms. 2016;13:1471-2164.
  12. Jordan BR, Strid A, Wargent JJ. Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Int J Curr Microbiol App Sci. 2016;3:749-760.
  13. Kohda H, Kasai R, Yamasaki K, Murakami K, Tanaka O. New sweet diterpene glucosides from S. rebaudiana. Phytochem. 1976;15:981-983.
  14. Shibata H, Sonoke S, Ochiai H, Nishihashi H, Yamada M. Glucosylation of steviol and steviol glucosides in extracts from S. rebaudiana Bertoni. Plant Physiol. 1991;95:152-156.
  15. Gregersen S, Jeppesen PB, Holst JJ, Hermansen K. Antihyperglycemi effects of stevioside in type 2 diabetic subjects. Metab. 2004;53:73-106.
  16. Din MSU, Chowdhury MS, Khan MMH, Din MBU, Ahmed R, Baten MA. In vitro propagation of S. rebaudiana Bertoin Bangladesh. Afr. J. Biotechol .2006;5:1238-1240.
  17. Ferri LA, Alves-Do-Prado W, Yamada SS, Gazola S, Batista MR, Bazotte RB. Investigation of the antihypertensive effect of oral crude stevioside in patients with mild essential hypertension. Phytother. Res. 2006;20:732-736.
  18. Geuns JMC. Molecules of interest Stevioside. Phytochem. 2003:64:913-921.
  1. Hendawey MH, El-Fadl RA, El-Din TS. Biochemical Role of Some Nanoparticles in the Production of Active Constituents in S. Rebaudiana L. Callus. Life Sci J. 2015:12.
  2. Javed R, Usman M, Yucesan B, Zia M, Gurel E. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of S. rebaudiana Bertoni. Plant Physiol Biochem 2016:1-6.
  3. Javed R, Mohamed A, Yucesan B, Gurel E, Kausar R, Zia M. CuO nanoparticles significantly influence in vitro culture, steviol glycosides and antioxidant activities of S. rebaudiana Bertoni. PCTOC. 2017:1-10.
  4. Majlesi Z, Ramezani M, Gerami M. Investigation on some main glycosides content of Stevia rebaudian B. under different concentration of commercial and synthesized silver nanoparticles. PBR. 2018;4:1-10.
  5. Ramezani M, Asghari S, Gerami M, Ramezani F, Abdolmaleki MK. Effect of Silver Nanoparticle Treatment on the Expression of Key Genes Involved in Glycosides Biosynthetic Pathway in S. rebaudiana B. Plant Sugar Tech. 2019;22:518-527
  6. Navarro E, Baun A, Behra R. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicol. 2008;17:372-386.
  7. Govorov AO, Carmeli I. Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Lett. 2007;7:620-625
  8. Garcia-Sanchez S, Bernales I, and Cristobal S. Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signaling. BMC Genomics. 2015;16:341-349.
  9. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N. Silica nanoparticles for increased silica availability in maize (Zeamays L) seeds under hydroponic conditions. Curr Nanosci. 2005;8:902-908.
  10. Govorov AO, Carmeli I. Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Lett. 2007;7:620-625.
  11. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L, Environ. Toxicol. Chem. 2014;33:2429-2437.
  12. Qi M, Liu Y, Li T. Nano-TiO2 improves the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res. 2013;156:323-328.
  13. Kalteh M, Alipour Z, Ashraf S, Aliabadi MM, Nosratabadi AF. Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J. Chem. Health Risks. 2014;4:49-55.