Effects of Foliar Application of Nano-ZnO on Morpho-physiological Characteristics and Ionic Content of Salvia leriifolia Benth. under Salinity Stress

Document Type : Research Paper


1 Khorasan-e-Razavi Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran

2 Department of Biology, Payame Noor University, Tehran, Iran

3 Department of Biology, Gorgan Branch, Islamic Azad University, Gorgan, Iran

4 Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran


Salinity stress, like many other abiotic stresses, limits the plant growth. Nanotechnology has been globally accepted as a modern, advanced technology that could enhance research in many fields. In order to investigate the effect of Nano-ZnO and salinity stress on morpho-physiological characteristics of Salvia leriifolia Benth., a factorial experiment was conducted as completely randomized design with three replications, the treatments were three nano-ZnO concentrations (0, 2, 4 mg/l) and five salinity levels (0, 50, 100, 150, 200 mM NaCl) in the greenhouse of Mashhad Islamic Azad University in 2019. The results showed that salinity stress had a significant effect on morpho-physiological indices as well as mineral nutrients. It was also found that 4 mg/l nano-ZnO concentration at the mild salinity stress (50 and 100 mM) increased leaf and root length, leaf and root soluble protein, and proline content compared to the control. Salinity stress also decreased the concentration of K+, Ca2+, Mg2+, Zn2+, Cu2+, P, and K+/Na+ ratio in roots and leaves, while Na+ content increased significantly during stress in both organs. Nevertheless, the application of nano-ZnO increased the content of Zn2+, Ca2+, K+, and K+/Na+ ratio in leaves and roots. 


  1. Dashti M., Kafi M., Astaraei A., Zabihi H.R. Investigation of yield and yield components response of Salvia leriifolia to the bio-logical and organic Fertilizers. Zeitschrift fur Arznei-&Gewurzpflanzen. 2018;23:84-90.
  2. Hosseinzadeh H., Sadeghnia H.R., Imenshahidi M., Fazly Bazzaz B.S. Review of the Pharmacological and Toxicological Effects of Salvia leriifolia. Iranian J Basic Medical Sci. 2009;12:1-8.
  3. Isayenkov S.V., and Maathuis F.J. Plant salinity stress: Many unanswered questions remain. Frontiers in plant science. 2019;10. DOI: https://doi.org/ 10.3389/fpls.2019.00080
  4. Abbasi G.H., Akhtar J., Ahmad R., Jamil M., Anwar-ul-Haq M., Ali S., Ijaz M. Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant growth regulation. 2015;76:111-125.
  5. Singh M., Kumar J., Singh S., Singh V.P., Prasad S.M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Bio/Technology. 2015;14:407-426. DOI: https://doi.org/10.1007/s11157-015-9372-8
  6. Meena M., Divyanshu K., Kumar S., Swapnil P., Zehra A., Shukla V., Yadav M., Upadhyay R. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon. 2019;5:e02952. DOI: https://doi.org/ 10.1016/j.heliyon.2019.e029
  7. Pande A., Arora S. Molecular strategies for development of abiotic stress tolerance in plants. Cell & Cellular Life Sci J. 2017;000112. DOI: https://doi.org/10.23880/CCLSJ-16000113
  8. Ashraf M., Mukhtar N., Rehman S., Rha E. Salt-induced changes in photosynthetic activity and growth in a potential medicinal plant Bishop’s weed (Ammi majus). Photosynthetica. 2004;42:543-550. DOI: https://doi.org/10.1007/S11099-005-0011-4
  9. Marschner H, Romheld V. Strategies of plants for acquisition of iron. Plant Soil. 1994;165:375-388.
  10. Sharma A, Patni B, Shankhdhar D, Shankhdhar SC. Zinc - an indispensable micronutrient. Physiol Mol Biol Plants. 2013;19:11-20. doi:10.1007/s12298-012-0139-1
  11. Day J., Das S., Mawlong L.G. Nanotechnology and its importance in micronutrient fertilization," International J Current Microbiology and Applied Sci. 2018;7:2306-2325. DOI: https: //doi.org/ 10.20546/ ijcmas. 2018.705.267
  12. Das A., Das B. Nanotechnology a Potential Tool to Mitigate Abiotic Stress in Crop Plants," Abiotic and Biotic Stress in Plants. IntechOpen. 2019. DOI: https://doi.org/10.5772/intechopen.83562
  13. Dashti M., Kafi M., Tavakkoli H., Mirza M. Cardinal temperatures for germination of Salvia leriifolia Herba polonica. 2015;61:5-18. DOI: https://doi.org/10.1515/hepo-2015-0006
  14. Bates L.S., Waldren R.P., Teare I. Rapid determination of free proline for water-stress studies. Plant and soil. 1973;39:205-207. DOI: https://doi.org/10.1007/BF00018060.
  15. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 1976;72:248-254. DOI: https://doi.org/10.1016 /0003-2697.
  16. Jamil M., Deog Bae L., Kwang Yong J., Ashraf M., Shenog Chun L., Eui Shik R. Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. J Central European Agric. 2006;7:273-282.
  17. Hasegawa P.M. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany. 2013;92:19-31. DOI: https://doi.org/ 10.1016/j.envexpbot. 2013.03.001
  18. Taarit M.B., Msaada K., Hosni K., Marzouk B. Physiological changes and essential oil composition of clary sage (Salvia sclarea) rosette leaves as affected by salinity. Acta physiologiae plantarum. 2011;33:153-162. DOI: https://doi.org/10.1007/s11738-010-0532-8
  19. Netondo G.W., Onyango J.C., Beck E. Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci. 2004;44:806. DOI: https://doi.org/ 10.2135/cropsci2004.0806
  20. Hendawy S., Khalid K.A. Response of sage (Salvia officinalis) plants to zinc application under different salinity levels. J Appl Sci Res. 2005;1:147-155.
  21. Torabian S., Zahedi M., Khoshgoftar A.H. Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutrition. 2016;39:172-180. DOI: https://doi.org/10.1080/01904167.2015.1009107
  22. Alloway B.J. Zinc in soils and crop nutrition, International Zinc Association Brussels. Belgium. 2008
  23. Khosravi, S., Amin, B., and Nezami, M. T. The salicylic acid effect on the Salvia officianlis sugar, protein and proline contents under salinity (NaCl) stress. J Stress Physiology Biochemistry. 2011;7:80-87.
  24. Babaei K., Seyed Sharifi R., Pirzad A., Khalilzadeh R. Effects of bio fertilizer and nano Zn-Fe oxide on physiological traits, antioxidant enzymes activity and yield of wheat (Triticum aestivum) under salinity stress. Journal of Plant Interactions. 2017;12:381-389. DOI:https://doi.org/10.1080/ 17429145.2017.1371798.
  25. Broadley M.R. , White P.J., Hammond J.P., Zelko I., Lux A. Zinc in plants. New phytologist. 2007;173:677-702. DOI: https://doi.org/10.1111/j.1469-8137.2007.01996.x
  26. Manaa A., Mimouni H., Wasti S., Gharbi E., Aschi-Smiti S., Faurobert M., Ahmed H.B. Comparative proteomic analysis of tomato (Solanum lycopersicum) leaves under salinity stress. Plant Omics. 2013;6:268.
  27. Peltzer D., Dreyer E., Polle A. Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei. Plant Physiology Biochemistry. 2002;40:141-150. DOI: https://doi.org/10.1016/S0981-9428 (01)01352-3
  28. Castillo-González J., Ojeda-Barrios D., Hernández-Rodríguez A., González-Franco A.C., Robles-Hernández L., López-Ochoa G.R. 2018, "Zinc Metalloenzymes in Plants," Interciencia, 2018;43:242-248.
  29. Boldaji S.H., Khavari-Nejad R., Sajedi R.H., Fahimi H., Saadatmand S. Water availability effects on antioxidant enzyme activities, lipid peroxidation, and reducing sugar contents of alfalfa (Medicago sativa). Acta physiologiae plantarum. 2012;34:1177-1186. DOI: https://doi.org/ 10.1007/s11738-011-0914-6
  30. Sairam, R., and Tyagi, A. Physiology and molecular biology of salinity stress tolerance in plants. Current science. 2004;407-421.
  31. Galal A. Exogenous application of zinc mitigates the deleterious effects in eggplant grown under salinity stress. Journal of Plant Nutrition. 2019;42:915-927. DOI: https://doi.org/10.1080/01904167. 2019. 1584221
  32. Aktaş H., ABAK K., Öztürk L., Çakmak İ. The effect of zinc on growth and shoot concentrations of sodium and potassium in pepper plants under salinity stress. Turkish J Agriculture Forestry. 2007;30:407-412.
  33. Akram N.A., Jamil A. Appraisal of physiological and biochemical selection criteria for evaluation of salt tolerance in canola (Brassica napus). Pak J Bot. 2007;39:1593-1608.
  34. Abbasi H., Jamil M., Haq A., Ali S., Ahmad R., Malik Z. Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste-Agriculture. 2016;103:229-238.
  35. Hadi M., Karimi N. The role of calcium in plant' salt tolerance. J plant nutrition. 2012;35:2037-2054. DOI: https://doi.org/10.1080/ 01904167.2012.717158
  36. Sajid Aqeel Ahmad M., Javed F., Ashraf M. Iso-osmotic effect of NaCl and PEG on growth, cations and free proline accumulation in callus tissue of two indica rice (Oryza sativa) genotypes. Plant Growth Regulation. 2007;53:53. DOI: https://doi.org/10.1007/s10725-007-9204-0
  37. Hafeez B., Khanif Y., Saleem M. Role of zinc in plant nutrition-a review. American journal of experimental Agriculture. 2013;3:374. DOI: https://doi.org/ 10.9734/AJEA/2013/2746
  38. Tavallali V., Rahemi M., Maftoun M., Panahi B., Karimi S., Ramezanian A., Vaezpour M. Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia horticulturae. 2009;123:272-279. DOI: https://doi.org/10.1016 /j.scienta. 2009. 09.006
  39. Mirsa A., Ramani S. Inhibition of iron absorption by zinc induced Fe-deficiency in Japanese mint. Acta Physiologiae Plantarum. 1991 (Poland).
  40. Zhao A.Q., Bao Q., Tian X.H., Lu X., William J.G. Combined effect of iron and zinc on micronutrient levels in wheat (Triticum aestivum). J environmental biology. 2011;32:235-239.
  41. Leidi E., Silberbush M., Lips S. Wheat growth as affected by nitrogen type, pH and salinity. I. Biomass production and mineral composition. J Plant Nutrition. 1991;14:235-246. DOI: https://doi.org/10.1080/ 01904169109364198
  42. De Lacerda C.F., Cambraia J., Oliva M.A., Ruiz H.A., Prisco J.T. n. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental Experimental Botany. 2003;49:107-120. DOI: https://doi.org/10.1016/S0098-8472(02) 00064-3.