Biolistic Transformation and Expression of Functional Chymosin from a Codon-Optimized Synthetic Bovine Gene in Tobacco Plants

Document Type : Research Paper

Authors

Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran

Abstract

Chymosin is an important milk clotting enzyme, massively used in the dairy industry. Due to the limited amount of natural chymosin, the recombinant enzyme produced in different organisms is the main source of chymosin. Plants have several advantages for large scale cost-effective production of recombinant chymosin. Here, we used a synthetic codon-optimized version of bovine prochymosin gene for ideal expression in the tobacco host. In this study, we utilized biolistic co-transformation method to introduce the synthetic bovine prochymosin gene into the tobacco genome. Several transgenic plants were regenerated on a selective medium. Molecular analysis confirmed successful integration and expression of prochymosin gene in several transgenic candidates. Total soluble protein extracts from transgenic plants were successfully applied for milk coagulation experiments, demonstrating the production of functional prochymosin in transgenic lines. In conclusion, here, we report successful expression of functional chymosin in tobacco plants from a novel synthetic version of the bovine prochymosin gene. Our experimental data support that plants could serve as a reliable source for safe and cost-effective production of recombinant chymosin enzyme for industrial usage.

Keywords


  1. Tran A.M., Unban K., Kanpiengjai A., Khanongnuch C., Mathiesen G., Haltrich D., Nguyen TH. Efficient secretion and recombinant production of a lactobacillal α-amylase in Lactiplantibacillus plantarum WCFS1: analysis and comparison of the secretion using different signal peptides. Front Microbiol. 2021;12.
  2. Belenkaya S., Bondar A., Kurgina T., Elchaninov V., Bakulina A.Y., Rukhlova E., Lavrik O., Ilyichev A., Shcherbakov D. Characterization of the Altai maral chymosin gene, production of a chymosin recombinant analog in the prokaryotic expression system, and analysis of its several biochemical properties. Biochem (Mosc). 2020;85(7):781-791.
  3. Theron C.W., Vandermies M., Telek S., Steels S., Fickers P. Comprehensive comparison of Yarrowia lipolytica and Pichia pastoris for production of Candida antarctica lipase B. Sci Rep. 2020;10(1):1-9.
  4. Adrio J.L., Demain A.L. Recombinant organisms for production of industrial products. Bioengineered Bugs. 2010;1(2):116-131.
  5. Mohanty A.K., Mukhopadhyay U.K., Grover S., Batish V.K. Bovine chymosin: production by rDNA technology and application in cheese manufacture. Biotechnol Adv. 1999;17(2-3):205-17.
  6. Filkin S.Y., Chertova N., Vavilova E., Zatsepin S., Eldarov M., Sadykhov E., Fedorov A., Lipkin A. Optimization of the production method for recombinant chymosin in the methylotrophic yeast Komagataella phaffii. Appl Biochem Microbiol. 2020;56(6):657-661.
  7. Tyagi A., Kumar A., Mohanty A.K., Kaushik J.K., Grover S., Batish V.K. Expression of buffalo chymosin in Pichia pastoris for application in mozzarella cheese. LWT-Food Scie Technol. 2017;84:733-739.
  8. Aboulnaga E. Cloning and expression of camel pro-chymosin encoding gene in E. coli and characterization of the obtained active enzyme. J. Food Dairy Sci. 2019;10(3):71-78
  9. Fischer R., Stoger E., Schillberg S., Christou P., Twyman R.M. Plant-based production of biopharmaceuticals. Curr Opin Plant Biol. 2004;7(2):152-158.
  10. Twyman R.M., Stoger E., Schillberg S., Christou P., Fischer R. Molecular farming in plants: host systems and expression technology. TRENDS Biotechnol. 2003;21(12):570-578.
  11. Sindarovska Y., Gerasymenko I., Sheludko Y., Olevinskaya Z., Spivak N., Kuchuk N. Production of human interferon ALPHA 2b in plants of Nicotiana excelsior by Agrobacterium-mediated transient expression. Cytol Genet. 2010;44(5):313-316.
  12. Larrick J.W., Thomas D.W. Producing proteins in transgenic plants and animals. Curr Opin Biotechnol. 2001;12(4):411-418.
  13. Liu W.G., Wang Y.P., Zhang Z.J., Wang M., Lv Q.X., Liu H.W., Meng L.C., Lu M. Generation and characterization of caprine chymosin in corn seed. Protein Expr Purif. 2017;135:78-82.
  14. Wei Z.Y., Zhang Y.Y., Wang Y.P., Fan M.X., Zhong X.F., Xu N., Lin F., Xing S.C. Production of bioactive recombinant bovine chymosin in tobacco plants. Int J Mol Sci. 2016;17(5):624.
  15. Cramer C.L., Boothe J.G., Oishi K.K. Transgenic plants for therapeutic proteins: linking upstream and downstream strategies. Curr Top Microbiol Immunol. 1999;240:95-118.
  16. Burnett M.J., Burnett A.C. Therapeutic recombinant protein production in plants: Challenges and opportunities. Plants People Planet. 2020;2(2):121-132.
  17. Zhou Z, Schnake P, Xiao L, Lal AA. Enhanced expression of a recombinant malaria candidate vaccine in Escherichia coli by codon optimization. Protein Expr Purif. 2004;34(1):87-94.
  18. Villalobos A., Ness J.E., Gustafsson C., Minshull J., Govindarajan S. Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC bioinform. 2006;7(1):1-8.
  19. Mauro V.P. Codon optimization in the production of recombinant biotherapeutics: potential risks and considerations. BioDrugs. 2018;32(1):69-81.
  20. Khatodia S., Paul Khurana S.M. Genetic engineering for plant transgenesis: Focus to pharmaceuticals. In: Barh D, Azevedo V (eds) Omics technologies and bio-engineering, Academic Press, 2018. pp 71-86.
  21. Gomes C., Oliveira F., Vieira S.I., Duque A.S. Prospects for the production of recombinant therapeutic proteins and peptides in plants: Special focus on Angiotensin I-Converting Enzyme Inhibitory (ACEI) peptides. In: Jamal F (eds) Genetic Engineering-A Glimpse of Techniques and Applications, IntechOpen, 2019.
  22. Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473-497.
  23. Li J, Wang S., Yu J., Wang L., Zhou S. A modified CTAB protocol for plant DNA extraction. Chin Bull Bot. 2013;48(1):72.
  24. Foltmann B. Prochymosin and chymosin (prorennin and rennin). Biochem J. 1969;115(3):3P-4P.
  25. Pedersen V.B., Christensen K.A., Foltmann B. Investigations on the activation of bovine prochymosin. Euro J Biochem. 1979;94(2):573-80.
  26. Espinoza-Molina J.A., Acosta-Muñiz CH., Sepulveda D., Zamudio-Flores P.B., Rios-Velasco C. Codon optimization of the “Bos Taurus Chymosin” gene for the production of recombinant chymosin in Pichia pastoris. Mol Biotechnol. 2016;58(10):657-664.
  27. Vasbinder A., Rollema H., Bot A., De Kruif C. Gelation mechanism of milk as influenced by temperature and pH; studied by the use of transglutaminase cross-linked casein micelles. J Dairy Sci. 2003;86(5):1556-1563.
  28. Green ML. Cheddar cheesemaking with recombinant calf chymosin synthesized in Escherichia coli. J Dairy Res. 1985;52(2):281-286.
  29. Vallejo J.A., Ageitos J.M., Poza M., Villa T.G. Cloning and expression of buffalo active chymosin in Pichia pastoris. J Agric Food Chem. 2008;56(22):10606-10610.
  30. Ali̇hanoğlu S, Ektiren D., Karaaslan M. Recombinant expression and characterization of Oryctolagus cuniculus chymosin in Komagataella ph.affii (Pichia pastoris). Protein Expr Purif. 2021;183:105874.
  31. Habib G. Estimation and mitigation of GHG emissions from ruminant livestock in Pakistan. Anim Prod Sci. 2019;59(8):1558-1567.
  32. Yadava A., Ockenhouse C.F. Effect of codon optimization on expression levels of a functionally folded malaria vaccine candidate in prokaryotic and eukaryotic expression systems. Infect Immun. 2003;71(9):4961-4969.
  33. Nassoury N., Morse D. Protein targeting to the chloroplasts of photosynthetic eukaryotes: getting there is half the fun. Biochim Biophys Acta Mol Cell Res 2005;1743(1):5-19.
  34. Luo F., Jiang W..H., Yang Y.X., Li J., Jiang M.F. Cloning and expression of yak active chymosin in Pichia pastoris. Asian-australas J Anim Sci. 2016;29(9):1363-1370.
  35. Sharp P.M., Li W-H. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15(3):1281-1295.
  36. Fu H., Liang Y., Zhong X., Pan Z., Huang L., Zhang H., Xu Y., Zhou W., Liu Z. Codon optimization with deep learning to enhance protein expression. Sci Rep. 2020;10(1):1-9.
  37. Menzella H.G. Comparison of two codon optimization strategies to enhance recombinant protein production in Escherichia coli. Microb Cell Factories. 2011;10(1):1-8.
  38. Feng Z., Ren J., Zhang Y., Hu S. Improved secretory production of calf prochymosin by codon optimization and disruption of PMR1 in Kluyveromyces lactis GG799. Afr J Biotechnol. 2011;10(52):10786-10789.
  39. Cardoza R.E., Gutierrez S., Ortega N., Colina A., Casqueiro J., Martin J.F. Expression of a synthetic copy of the bovine chymosin gene in Aspergillus awamori from constitutive and pH-regulated promoters and secretion using two different pre-pro sequences. Biotechnol Bioeng. 2003;83(3):249-59.
  40. Peach C., Velten J. Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol. 1991;17(1):49-60.
  41. Conrad U., Fiedler U. Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol. 1998;38(1):101-109.
  42. Goulet C., Michaud D. Degradation and stabilization of recombinant proteins in plants. Floriculture Ornamental Plant Biotechnol. 2006:35-40.
  43. Zoschke R., Bock R. Chloroplast translation: Structural and functional organization, operational control, and regulation. Plant Cell. 2018;30(4):745-770.
  44. Maclean J., Koekemoer M., Olivier A., Stewart D., Hitzeroth I., Rademacher T., Fischer R., Williamson A-L., Rybicki E. Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J. Gen Virol. 2007;88(5):1460-1469.
  45. Gils M., Kandzia R., Marillonnet S., Klimyuk V., Gleba Y. High‐yield production of authentic human growth hormone using a plant virus‐based expression system. Plant Biotechnol J. 2005;3(6):613-620.
  46. Woodard S.L., Mayor J.M., Bailey M.R., Barker D.K., Love R.T., Lane J.R., Delaney D.E., McComas‐Wagner J.M., Mallubhotla H.D., Hood E.E. Maize (Zea mays)‐derived bovine trypsin: characterization of the first large‐scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem. 2003;38(2):123-130.
  47. Azzoni A.R., Kusnadi A.R., Miranda E.A., Nikolov Z.L. Recombinant aprotinin produced in transgenic corn seed: extraction and purification studies. Biotechnol Bioeng. 2002;80(3):268-276.
  48. Azzoni A., Takahashi K., Woodard S., Miranda E., Nikolov Z. Purification of recombinant aprotinin produced in transgenic corn seed: separation from CTI utilizing ion-exchange chromatography. Braz J. Chem Eng. 2005;22:323-330.
  49. Miki B., McHugh S. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol. 2004;107(3):193-232.
  50. Hare P.D., Chua N-H. Excision of selectable marker genes from transgenic plants. Nat Biotechnol. 2002;20(6):575-580.
  51. Darbani B., Eimanifar A., Stewart Jr C.N., Camargo W.N. Methods to produce marker‐free transgenic plants. Biotechnol J. 2007;2(1):83-90.
  52. Li X., Pan L., Bi D, Tian X., Li L, Xu Z., Wang L., Zou X., Gao X., Yang H. Generation of marker-free transgenic rice resistant to rice blast disease using Ac/Ds transposon-mediated transgene reintegration system. Front Plant Sci. 2021;12:426.