The Antimicrobial Activity of Endophytic Fungi Isolated from Thymus spp.

Document Type : Research Paper

Authors

Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

Abstract

Medicinal plants have been known to act as a harbor for endophytic fungi, owing to their being able to produce bioactive compounds similar to those of their host. Thymus is a member of the Lamiaceae family. It enjoys a long history of traditional and modern medicine as a disinfectant that possesses antimicrobial properties. The pharmaceutical properties of this plant can be attributed to its endophytes. In this research, 89 endophytic fungi of Thymus spp. were tested and examined to investigate their biocontrol effects against the plant pathogenic fungus Botrytis cinerea, the plant pathogenic bacteria Xanthomonas arboricola pv. juglandis and Streptomyces scabies and human pathogens Escherichia coli ATTCC 25922 and Staphylococcus aureus ATCC 33591. Thereafter, to control fungal and bacterial pathogens, the extracellular metabolites of the endophytic fungi were extracted and used in seven different concentrations. The effect of endophytic fungi on the growth of B. cinerea suggested that the M24 isolate (Fusarium subglutinans) was the one with the greatest percentage of inhibition. Out of the 89 isolates tested against bacteria, only one isolate affected X. arboricola, three of them affected E. coli, and eight isolates showed biocontrol effect on bacterium S. aureus. In the case of S. scabies, all Fusarium isolates prevented its growth. Among other isolates, only M32 and M33, which belong to mycelia sterilia, affected the growth of this bacterium. Endophytic extracellular metabolites had great potential to control plant pathogens as well.

Keywords


  1. Wilson D. Endophyte: The Evolution of a term, and clarification of its use and definition. Oikos. 1995;73:274–276.
  2. Xu J., Ebada S.S., Proksch P. Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Divers. 2010;44:15–31.
  3. Aly A.H., Debbab A., Proksch P. Fungal endophytes: Unique plant inhabitants with great promises. App Microbiol Biotechnol. 2011;90:1829–1845.
  4. Pimentel M.R., Molina G., Dionísio A.P., Maróstica Junior M.R., Pastore G.M. The Use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int. 2011;2011:1–11.
  5. Stierle A., Strobel G., Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science. 1993;260:214-216.
  6. Stierle A., Strobel G., Stierle D., Grothaus P., Bignami G. The search for a taxol-producing microorganism among the endophytic fungi of the pacific yew, taxus brevifolia. Nat Prod J. 1995;58:1315-1324.
  7. Naik S., Shaanker R.U., Ravikanth G., Dayanandan S. How and why do endophytes produce plant secondary metabolites? Symbiosis. 2019;78:193–201.
  8. Gouda S., Das G., Sen S.K., Shin H. Endophytes :a treasure house of bioactive compounds of medicinal importance. 2016;7:1–8.
  9. Bolívar-Anillo H.J., Garrido C., Collado I.G. Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochem Rev. 2020;19:721-740.
  10. Waller F., Achatz B., Baltruschat H., Fodor J., Becker K., Fischer M., et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci. 2005;102:13386–13391.
  11. Arnold A.E., Mejia L.C., Kyllo D., Rojas E.I., Maynard Z., Robbins N., et al. Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci. 2003;100:15649–15654.
  12. Fernandes M.D.R.V., Silva TAC e, Pfenning L.H., Costa-Neto C.M da, Heinrich T.A, Alencar S.M de, et al. Biological activities of the fermentation extract of the endophytic fungus Alternaria alternata isolated from Coffea arabica L. Brazilian J Pharm Sci. 2009;45:677–685.
  13. Pavithra N., Sathish L., Ananda K. Antimicrobial and enzyme activity of endophytic fungi isolated from Tulsi. Pharm Biomed Sci J. 2012;16:2014.
  14. Katoch M., Pull S. Endophytic fungi associated with Monarda citriodora, an aromatic and medicinal plant and their biocontrol potential. Pharm Biol. 2017;55:1528–1535.
  15. Huang L.Q., Niu Y.C., Su L., Deng H., Lyu H. The potential of endophytic fungi isolated from cucurbit plants for biocontrol of soilborne fungal diseases of cucumber. Microbiol Res. 2019; 231:126369.
  16. Tran H.B.Q., Mcrae J.M., Lynch F., Palombo E.A. Identification and Bioactive Properties of Endophytic Fungi Isolated From Phyllodes of Acacia Species. In: Mendez-Vilas A, editor. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex Madrid Spain. 2010, pp. 377–382.
  17. Christina A., Christapher V., Bhore S. Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn Rev. 2013;7:11–16.
  18. De Martino L., Bruno M., Formisano C., De Feo V., Napolitano F., Rosselli S., et al. Chemical composition and antimicrobial activity of the essential oils from two species of Thymus growing wild in southern Italy. Molecules. 2009;14:4614-4624.
  19. Cosentino S., Tuberoso C.I.G., Pisano B., Satta M., Mascia V., Arzedi E., et al. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett Appl Microbiol. 1999;29:130–135.
  20. Khan I.A., Abourashed E.A. Leung’s Encyclopedia of Common Natural Ingredients used in Food, Drugs and Cosmetics. 3rd ed. Wiley, 2010.
  21. Horváth G., Jámbor N., Végh A., Böszörményi A., Lemberkovics É., Héthelyi É., et al. Antimicrobial activity of essential oils: the possibilities of TLC-bioautography. Flavour Fragr J. 2010;25:178-182.
  22. Inouye S., Takizawa T., Yamaguchi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. Antimicrob Chemother J. 2001;47:565–573.
  23. Fachini-Queiroz F.C., Kummer R., Estevão-Silva C.F., Carvalho M.D.D.B., Cunha J.M., Grespan R., et al. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evidence-Based Complement Altern Med. 2012;2012:1–10.
  24. Mahmoudi H., Rahnama K., Arabkhani M. Antibacterial effect essential oil and extracts of medicinal plant on the causal agents of bacterial canker and leaf spot on the stone fruit. Med Plants J. 2010;4:34–42.
  25. Bouchra C., Achouri M., Hassani L.M.I., Hmamouchi M. Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr. Ethnopharmacol J. 2003;89:165–169.
  26. Hasani A., Jalili Marandi R., Ghosta Y. Use of essential oils in control of grey mold (Botrytis cinerea) infection in of pear fruits. Iran Hortic Sci J. 2009;40:85-94.
  27. Sharififar F., Moshafi M.H., Mansouri SH., Khodashenas M., Khoshnoodi M. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Control. 2007;18:800-805.
  28. Salehzadeh A., Sadat M., Doulabi H., Sohrabnia B., Jalali A. The effect of thyme (Thymus vulgaris) extract on the expression of norA efflux pump gene in clinical strains of Staphylococcus aureus. Genet Resour J. 2018;4:26–36.
  29. Masumi S., Mirzaei S., Zafari D., Kalvandi R. Isolation, identification and biodiversity of endophytic fungi of Thymus. Prog Biol Sci. 2015;5:43–50.
  30. Dennis C., Webster J. Antagonistic properties of species-groups of Trichoderma III. Hyphal interaction. Trans Br Mycol Soc. 1971;57:363-369.
  31. Taechowisan T., Lu C., Shen Y., Lumyong S. Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology. 2005;151:1691–1695.
  32. P., Lino-Neto T., et al. A new effective assay to detect antimicrobial activity of filamentous fungi. Microbiol Res. 2013;168:1–5.
  33. Haque M.A., Hossain M.S., Rahman M., Rahman M.R., Hossain M.S., Mosihuzzaman M., et al. Isolation of bioactive secondary metabolites from the endophytic fungus of Ocimum basilicum. Dhaka Univ Pharm Sci J. 2005;4:127–130.
  34. Chakravarthi B.V.S.K., Das P., Surendranath K., Karande A.A., Jayabaskaran C. Production of paclitaxel by Fusarium solani isolated from Taxus celebica. Biosci J. 2008;33:259–267.
  35. Jalgaonwala R.E., Mohite B.V., Mahajan R.T. Evaluation of endophytes for their antimicrobial activity from indigenous medicinal plants belonging to north maharashtra region India. Int Pharm Biol Res J. 2010;1:136–141.
  36. Aly A.H., Debbab A., Kjer J., Proksch P. Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers. 2010;41:1–16.
  37. Rodriguez R.J., White Jr J.F., Arnold A.E., Redman R.S. Fungal endophytes: diversity and functional roles. New Phytol. 2009;182:314–330.
  38. Kernaghan G., Mayerhofer M., Griffin A. Fungal endophytes of wild and hybrid Vitis leaves and their potential for vineyard biocontrol. Can Microbiol J. 2017;63:583–595.
  39. Miles L.A., Lopera C.A., González S., de García M.C.C., Franco A.E., Restrepo S. Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. BioControl. 2012;57:697-710.
  40. Zhang Q., Zhang J., Yang L., Zhang L., Jiang D., Chen W., et al. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol Control. 2014;72:98–108.
  41. Baghestan P. Biological control of Fusarium rot of crown and root of corn by species of fungi Trichodermae in the province Hamedan. University of Tehran. 2007.
  42. Masumi S., Mirzaei S., Zafari D., Kalvandi R., Keshtkar A. Bioactivity of endophytic bacteria and yeasts isolated from Thymus. Prog Biol Sci. 2015;5:33-42.
  43. Arora D.S., Kaur N. Antimicrobial potential of fungal endophytes from Moringa oleifera. Appl Biochem Biotechnol. 2019;187:628–648.