Morphophysiological and Phytochemical Diversity of Hazelnut (Corylus avellana L.) Populations in Northwestern Iran

Document Type : Research Paper

Authors

1 Departement of Horticulture, Faculty of Agriculture, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran

2 Department of Horticulture, Medicinal Plants and Organic Products Research Center, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran

3 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran

4 Medicinal Plants Research Center, Shahed University, Tehran, Iran

5 Deparment of Agronomy and Plant Breeding, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran

6 Medicinal Plant Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran

Abstract

Due to the nutritional and pharmaceutical importance of hazelnut (Corylus avellana L.), the morphophysiological and phytochemical diversity of 15 Iranian hazelnut populations with two commercial cultivars were studied. The genotypes had significant differences in morphophysiological and phytochemical characteristics. The significant variance among genotypes (p<0.01) and high genetic variance (σ2g) indicated the divearsity in most traits. The highest coefficient of genetic changes was related to the percentage of fruit kernel, kernel width, calcium, phosphorus, total phenol and taxol. The main components did not correspond to different traits.  Mantel test showed that the correlation between the groupings based on morphological traits and climatic variability was 0.67%, while it was 0.51% for the phytochemical traits and 0.41% for taxol. The significant diversity among hazelnut genotypes and also the mismatch with climatic diversity indicated the role of genetic factors on traits, which can be used in future breeding programs to produce superior hazelnut cultivars.

Keywords


  1. Asadi F., Sharifnia F., Salimpour F., Majd A. Using micro-morphological fruit characters in resolving some of ambiguities in Iranian Acer L.(Sapindaceae) species. Biodiversitas J Biological Diversity. 2019; 20(1):297-304.
  2. Muehlbauer M.F. The Use of Molecular and Biochemical Tools to Assist in the Breeding of Hazelnuts (Corylus Spp.): Rutgers The State University of New Jersey-New Brunswick; 2017.
  3. Salimi S., Hoseinova S. Selecting hazelnut (Corylus avellana L.) rootstocks for different climatic conditions of Iran. 2012.
  4. Kafkas S., Doğan Y., Sabır A., Turan A., Seker H. Genetic characterization of hazelnut (Corylus avellana L.) cultivars from Turkey using molecular markers. HortScience. 2009; 44(6):1557-61.
  5. Mehlenbacher S. Progress in breeding new hazelnut cultivars in Oregon. Nucis Newsletter. 1995;3:8-9.
  6. Özdemir K.S., Yılmaz C., Durmaz G., Gökmen V. Hazelnut skin powder: A new brown colored functional ingredient. Food Res International. 2014; 65:291-7.
  7. Oliveira I., Sousa A., Morais J.S., Ferreira I.C., Bento A., Estevinho L., et al. Chemical composition, and antioxidant and antimicrobial activities of three hazelnut (Corylus avellana L.) cultivars. Food Chemical Toxicology. 2008;46(5):1801-7.
  8. Alasalvar C., Amaral J.S., Satır G., Shahidi F. Lipid characteristics and essential minerals of native Turkish hazelnut varieties (Corylus avellana L.). Food Chemistry. 2009;113(4):919-25.
  9. Król K., Gantner M., Piotrowska A. Morphological traits, kernel composition and sensory evaluation of hazelnut (Corylus avellana L.) cultivars grown in Poland. Agronomy. 2019;9(11):703.
  10. Crews C., Hough P., Godward J., Brereton P., Lees M., Guiet S., et al. Study of the main constituents of some authentic hazelnut oils. J Agricultural Food Chemistry. 2005;53(12):4843-52.
  11. Miele M., Mumot A.M., Zappa A., Romano P., Ottaggio L. Hazel and other sources of paclitaxel and related compounds. Phytochemistry reviews. 2012;11(2-3):211-25.
  12. Gallego A., Malik S., Yousefzadi M., Makhzoum A., Tremouillaux-Guiller J., Bonfill M. Taxol from Corylus avellana: paving the way for a new source of this anti-cancer drug. Plant Cell, Tissue and Organ Culture (PCTOC). 2017;129(1):1-16.
  13. Qaderi A., Omidi M., Pour-Aboughadareh A., Poczai P., Shaghaghi J., Mehrafarin A., et al. Molecular diversity and phytochemical variability in the Iranian poppy (Papaver bracteatum Lindl.): A baseline for conservation and utilization in future breeding programmes. Industrial Crops and Products. 2019;130:237-47.
  14. Grime J. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecology. 1998;86(6):902-10.
  15. Soorni, J., Kazemitabar S.K., Kahrizi D., Dehestani A., Bagheri N. Genetic analysis of freezing tolerance in camelina [Camelina sativa (L.) Crantz] by diallel cross of winter and spring biotypes. Planta. 2021; 253(1), 1-11.
  16. Nejatian M., Hosseinava S., Javadi D. Collection and preliminary evaluation of some hazelnut genotypes of Iran. Seed and Plant Improvement J. 2012;28(1).
  17. Ferreira J., Garcia‐González C., Tous J., Rovira M. Genetic diversity revealed by morphological traits and ISSR markers in hazelnut germplasm from northern Spain. Plant breeding. 2010; 129(4):435-41.
  18. Gökirmak T., Mehlenbacher S.A., Bassil N.V. Characterization of European hazelnut (Corylus avellana) cultivars using SSR markers. Genetic Resources Crop Evolution. 2009; 56(2):147-72.
  19. Rosado T.B., Laviola B.G., Faria D.A., Pappas M.R., Bhering L.L., Quirino B., et al. Molecular markers reveal limited genetic diversity in a large germplasm collection of the biofuel crop Jatropha curcas L. in Brazil. Crop Sci. 2010; 50(6):2372-82.
  20. An N., Turp M.T., Türkeş M., Kurnaz M.L. Mid-term impact of climate change on hazelnut yield. Agriculture. 2020; 10(5):159.
  21. Hosseini Gheydari F., Tahernezhad Z. Genetic analysis of some genotypes and varieties of olive in Qom province using morphological and ISSR markers. J Plant Productions (Agronomy, Breeding and Horticulture). 2019; 42(3):373-86.
  22. Hasnaoui N., Buonamici A., Sebastiani F., Mars M., Zhang D., Vendramin G.G. Molecular genetic diversity of Punica granatum L.(pomegranate) as revealed by microsatellite DNA markers (SSR). Gene. 2012; 493(1):105-12.
  23. Ershadi A., Farrokhi Toolir J., Hossein Ava S., Molnar T.J. An Appraisal of Phenotypic Diversity Among Hazelnut Wild Germplasm from Northwest Iran. J Nuts. 2020; 11(4):263-77.
  24. Milošević T., Milošević N. Determination of size and shape features of hazelnuts using multivariate analysis. Acta Sci Pol Hortorum Cultus. 2017; 16:49-61.
  25. Fan L., Ren J., Yang Y., Zhang L. Comparative Analysis on Essential Nutrient Compositions of 23 Wild Hazelnuts (Corylus heterophylla) Grown in Northeast China. J Food Quality. 2020;2020.
  26. Ghodsizad G., Safekordi A. Oil Extraction from Millet Seed–Chemical Evaluation of Extracted Oil. 2012.
  27. Chromý V., Vinklárková B., Šprongl L., Bittová M. The Kjeldahl method as a primary reference procedure for total protein in certified reference materials used in clinical chemistry. I. A review of Kjeldahl methods adopted by laboratory medicine. Critical reviews in analytical chemistry. 2015;45(2):106-11.
  28. Aydemir L.Y., Gökbulut A.A., Baran Y., Yemenicioğlu A. Bioactive, functional and edible film-forming properties of isolated hazelnut (Corylus avellana L.) meal proteins. Food Hydrocolloids. 2014;36:130-42.
  29. Rover M.R., Brown R.C. Quantification of total phenols in bio-oil using the Folin–Ciocalteu method. J Analytical Applied Pyrolysis. 2013; 104:366-71.
  30. Faramarz S., Dehghan G., Jahanban-Esfahlan A. Antioxidants in different parts of oleaster as a function of genotype. BioImpacts: BI. 2015;5(2):79.
  31. Dehghan G., Khoshkam Z. Tin (II)–quercetin complex: Synthesis, spectral characterisation and antioxidant activity. Food Chemistry. 2012;131(2):422-6.
  32. Rezaei F., Bakhshi D., Ghazvini R.F., Majd D.J., Pourghayoumi M. Evaluation of fatty acid content and nutritional properties of selected native and imported hazelnut (Corylus avellana L.) varieties grown in Iran. J Applied Botany Food Quality. 2014;87.
  33. Mehlenbacher S.A. Geographic distribution of incompatibility alleles in cultivars and selections of European hazelnut. J the American Society for Horticultural Sci. 2014;139(2):191-212.
  34. Solar A., Štampar F., editors. Inter-year variability of pomological traits evaluated in different hazelnut cultivars in Slovenia. VII International Congress on Hazelnut 845; 2008.
  35. Kacal M., Koyuncu M.A. Cracking characteristics and kernel extraction quality of hazelnuts: Effects of compression speed and positions. International J Food Properties. 2017;20(sup2):1664-74.
  36. Kh A. Study of association between molecular markers and fruit traits in hazelnut using multivariate regression analysis. J Cell Tissue. 2014;5(3):289-99.
  37. Xu Y., Hanna M.A. Evaluation of Nebraska hybrid hazelnuts: Nut/kernel characteristics, kernel proximate composition, and oil and protein properties. Industrial Crops Products. 2010;31(1):84-91.
  38. Hoffman A., Shahidi F. Paclitaxel and other taxanes in hazelnut. J Functional Foods. 2009;1(1):33-7.
  39. Oğuzkan S.B., Karadeniz Ş., Karagül B., Uzun A., Aksoy E.S., Güler Ö.Ö., et al. Effects of some adsorbents on the pre-purification of taxol (anticancer drug) from hazelnut nutshells. 2018.
  40. Shirazi M.R., Rahpeyma S., Zolala J. A new approach to prevent hazelnut callus browning by modification of sub-culture. Biologia Plantarum. 2020;64(1):417-21.
  41. Gallego Palacios A. Corylus avellana: a new biotechnological source of anticancer agents: Universitat Pompeu Fabra; 2015.
  42. Ciarmiello L.F., Mazzeo M.F., Minasi P., Peluso A., De Luca A., Piccirillo P., et al. Analysis of different European hazelnut (Corylus avellana L.) cultivars: authentication, phenotypic features, and phenolic profiles. J Agricultural Food Chemistry. 2014;62(26):6236-46.
  43. Srivastava K., Zargar K., Singh S. Genetic divergence among Corylus colurna genotypes based on morphological characters of hazelnut. Biodiversity Res Conservation. 2010;17:13.
  44. Ozturk S.C., Ozturk S.E., Celik I., Stampar F., Veberic R., Doganlar S., et al. Molecular genetic diversity and association mapping of nut and kernel traits in Slovenian hazelnut (Corylus avellana) germplasm. Tree Genetics Genomes. 2017;13(1):16.
  45. Wickremesinhe E.R., Arteca R.N. Effects of plant growth regulators applied to the roots of hydroponically grown Taxus× media plants on the production of taxol and related taxanes. Plant Sci. 1996;121(1):29-38.
  46. Hogg E.H., Saugier B., Pontailler J.Y., Black T., Chen W., Hurdle P., et al. Responses of trembling aspen and hazelnut to vapor pressure deficit in a boreal deciduous forest. Tree Physiology. 2000;20(11):725-34.
  47. Raparelli E., Lolletti D. Research, innovation and development on Corylus avellana through the bibliometric approach. International J Fruit Sci. 2020;20(sup3): S1280-S96.