Effects of Biological Fertilizers on Some Physiological Traits of Sweet Basil under Water Deficit Stress

Document Type : Research Paper

Authors

1 Shahid Bakeri High Education Center of Miandoab, Urmia University, Urmia, Iran

2 Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

10.22092/jmpb.2022.356634.1424

Abstract

Today, the use of biological fertilizers in sustainable agriculture is an appropriate alternative to chemical fertilizers because the former can improve the quantitative and qualitative performance of plants, especially under stressful conditions. Therefore, this study aims in greenhouse conditions to investigate the effects of plant growth-promoting rhizobacteria on antioxidant enzyme activities and some physiological traits of sweet basil under water limitation. For this purpose, a factorial experiment was conducted based on a completely randomized block design with three replications. Three levels of water deficit stress factor involved W0= 100% of field capacity, W1= 60% of the field capacity, and W2= 40% of the field capacity. Also, biofertilizers factor included nine levels of F1: Pota Barvar-2, F2: Phosphate Barvar-2, F3: Azeto Barvar 1, F4 (the combination of F1 and F2), F5 (the combination of F1 and F3), F6 (the combination of F2 and F3), F7 (the combination of F1, F2, and F3); F8 (100% chemical fertilizer as a positive control) and F9 (without any fertilizer as a negative control). Results showed that water limitation increased the activity of ascorbate peroxidase (193.55%), peroxidase (416.258%), polyphenol oxidase (48.21%) enzymes, and essential oil yield (135.48%). Meanwhile, the chlorophyll index, carotenoid, and yield decreased under water deficit stress. The use of biofertilizers improved these traits under water limitation conditions and normal irrigation. Also, applying a combination of 3 biofertilizers (F7) led to an increase 29.88% in the yield compared with negative control under severe water limitation. Therefore, the use of biofertilizer can be recommended for profitable basil production under water limitation conditions.
Abbreviations: Catalase: (CAT), Peroxidase: (PROX), Ascorbate peroxidase: (ASP)

Keywords


  1.  

    1. Gürgan M., Adiloğlu S. Increasing concentrations of iron fertilizer affect antibacterial activity of basil (Ocimum basilicum L.). Ind Crops Prod. 2021; 170: 113-768. https://doi.org/10.1016/j.indcrop.2021.113768
    2. Kaya I., Yigit N., Benli M., Afr J. Tradit. Complement. Altern. Med. 2008: 5: 363.
    3. Zhan Y., An X., Wang S., Sun M., Zhou H. Basil polysaccharides: A Rewiew on Extraction, Bioactivities and Pharmacological Applications, Bioorganic & Medicinal Chem. 2019; https://doi.org/10.1016/j.bmc.2019.115179.
    4. Kuchaki A., Nasiri Mahallati M., Hassanzadeye avval F., Mansuri H. Vegetables biodiversity assessment in Iran agroecologys. Iranian J. Applied Ecology. 2013; 2(4): 1-11.
    5. Begum F., Amin M.N., Azad M. In vitro rapid clonal propagation of Ocimum basilicum L. Plant Tissue Culture. 2002; 12: 27-35.
    6. Mahdavikia H., Rezaei-Chiyaneh E., Rahimi A., Mohammadkhani N. Effects of Fertilizer Treatments on Antioxidant Activities and Physiological Traits of Basil (Ocimum basilicum L.) under Water Limitation Conditions. J. Medicinal Plants by- products. 2018; 2: 143-151
    7. Dobbelaere S, Vanderleyden J, Yaacov Y. Plant growthpromoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci. 2003; 22: 107–149.
    8. Olanrewaju O.S., Glick B.R. Babalola O.O., Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 2017; 33 (197): 1-16
    9. Noorieh B., Arzanesh M.H., Mahlegha G., Maryam S. The Effect of Plant Growth Promoting Rhizobacteria on Growth Parameters, Antioxidant Enzymes and Microelements of Canola under Salt Stress. J. Appl Environ Biol Sci. 2013; 3:17–27.
    10. Goudaa S., Kerryb R.G., Dasc G., Paramithiotisd S., Shin H.S., et al. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. J Micres. 2018; 206: 131–140
    11. Kahil A.A., Hassan F.A.S., Ali E.F. Influence of Bio-fertilizers on Growth, Yield and Anthocyanin Content of Hibiscus sabdariffa L. Plant under Taif Region Conditions. Annu Rev Cell Biol. 2017; 17(1): 1-15.
    12. Kapoor R., Chaudhary V., Bhatnagar A.K. Effects of arbuscular mycorhiza and phosphorus application on artemisinin concenteration in Artemisia annua L. Mycoriza. 2007; 17: 581-587.
    13. Shaalan M.N. Effect of compost and different sources of biofertilizers, on borage plants (Borago officinalis). Egypt. J. Agric. Res. 2005; 83: 271-284.
    14. Kapoor R., Giri B., Mukerji K.G. Improved growth and essential oil yield and quality in Foeniculum vulgare Mill. On mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol. 2004; 93: 307-311
    15. Biglari T., Maleksaeidi H., Eskandari F., Jalali M. Livestock insurance as a mechanism for household resilience of livestock herders to climate change: Evidence from Iran. Land use policy. 2019; 87, 1-9.
    16. Vaghefi S.A., Keykhai M., Jahanbakhshi F., Sheikholeslami J, Ahmadi A, Yang H. Abbaspour KC. The future of extreme climate in Iran. Sci Rep. 2019; 9, 1464.
    17. Seleiman M.F., Al-Suhaibani N. Ali N., Akmal M., Alotaibi M., Refay Y., Dindaroglu T., Abdul-Wajid H.H. Battaglia ML. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 2021; 10, 259.
    18. Nayyar H., Gupta D. Differentiala sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environ Exp Bot. 2006; 58: 106–113.
    19. Hussain S., Saleem M.F., Iqbal J., Ibrahim M., Atta S., Ahmed T., Rehmani M.I.A. Exogenous application of abscisic acid may improve the growth and yield of sunflower hybrids under drought. Pak J Agric Sci. 2014; 51(1): 49-58.
    20. Iturbe-Ormaetxe I., Escuredo P.R., Arrese-Igor C., Becana. M. Oxidative Damage in Pea Plants Exposed to Water Deficit or Paraquat. Plant Physiol. 1998; 116: 173–181.
    21. Xu P.L., Guo Y.K., Bai J.G., Shang L., Wang X.J. Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol. Plant. 2008; 132,467–478.
    22. Mohammadkhani N., Heidari R. Effects of water stress on respiration, photosynthetic pigments and water content in tow Maize cultivar. Pakistan J. Biology Sci. 2007; 10(22): 4022-4028.
    23. Lal P, Chhipa BR, Kumar A. Salt Affected Soil and Crop Production: A Modern Synthesis. Agro Botanical Publishers, India. 1993.
    24. Mayer A., Harel E., Shaul R. Assay of Catechol Oxidase a Critical Comparison of Methods. Phytochemistry. 1965; 5: 783-789.
    25. Arnon D.I., Allen M.B., Whatley F.R. Photosynthesis by isolated chloroplast. IV. General concept and comparison of three photochemical reactions. Biochemica et Biophysica Acta. 1959; 20(3): 449-461.
    26. Charles D.J., Simon J.E. Comparison of Extraction methods for the Rapid Determination of Essential Oil Content and Composition of Basil. Horticultural Science is J. Am Soc Hortic Sci. 1990; 115: 458-462.
    27. Gao X., Ohlander M., Jeppsson N., Bjork L., Trajkovski V. Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruit of Sea Buckthourn (Hippophae rhamnoides.L) during Maturation. J. Agric. Food Chem. 2000; 48: 1458-1490.
    28. Paknejad F., Majidi heravan E., Noor Mohammadi Q., Siyadat A., Vazan S. Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. Sci J Biol Sci. 2007; 7:841-847.
    29. Esfandiari E., Shakiba M.R., Mahboob S.A., Alyari H., Shahabivand S. The effect of water stress on the antioxidant content, protective enzyme activities, proline content and lipid peroxidation in wheat seedling. Pak J. Biol Sci. 2008; 11: 1916-1922.
    30. Cakmakci R., Donmez M.F., Erdogan U. The Effect of Plant Growth Promoting Rhizobacteria on Barley Seedling Growth, Nutrient Uptake, some Soil Properties, and Bacterial Counts. Turk J Agric for. 2007; 31: 189–199.
    31. Xiao X., Xu X., Yang F. Adaptive Responses to Progressive Drought Stress in two Populus cathayana Populations. Silva Fenn. 2008; 42: 705–719.
    32. Moller I.M., Jensen P.E., Hansson A. Oxidative Modifications to Cellular Components in Plants. Annu Rev Plant Biol. 2007; 58:459–481.
    33. Stefan M., Munteanu N., Stoleru V., Mihasan M. Effects of Inoculation with Plant Growth Promoting Rhizobacteria on Photosynthesis, Antioxidant Status and Yield of Runner Bean. Rom. Biotechnol. Lett. 2013; 18(2): 8132–8143.
    34. Kleiner K.W., Abrams M.D., Schultz J.C. The Impact of Water and Nutrient Deficiencies on the Growth, Gas Exchange and Water Relations of Red Oak and Chestnut Oak. Tree Physiol. 1992; 11: 271–287.
    35. Aliabadi Farahani H., Valadabadi S.A.R., Daneshian J., Khalvati M.A. Evaluation changing of essential oil of balm (Melissa officinalis L.) under water deficit stress conditions. J. Medicinal Plants; 2009: 3(5): 329-333.
    36. Emami Bistgani Z., Siadat S.A., Bakhshandeh A., Ghasemi Pirbalouti A., Hashemi M. application on physiological characteristics and essential oil yield of Thymus daenensis. Celak ScienceDirect. 2017; 5(5): 407-415
    37. Khalid Kh.A. Influence of Water Stress on Growth, Essential Oil, and Chemical Composition of Herbs (Ocimum sp.). Int Agrophysics. 2006; 20(4): 289-296.
    38. Farouk S., Omar M.M. Sweet Basil Growth, Physiological and Ultrastructural Modification, and Oxidative Defense System Under Water Deficit and Silicon Forms Treatment. J Plant Growth Regul 2020; 39, 1307–1331
    39. Ebrahimian E., Bybordi A. Influence of ascorbic acid foliar application on chlorophyll, flavonoids, anthocyanin and soluble sugar contents of sunflower under conditions of water deficit stress. J. Food Agric Environ. 2012; 10: 1026–1030.
    40. Rezaei-Chiyaneh E., Mahdavikia H., Hadi H., Alipour H, Kulak M., Caruso G., Siddique KH.M. The effect of exogenously applied plant growth regulators and zinc on some physiological characteristics and essential oil constituents of Moldavian balm (Dracocephalum moldavica L.) under water stress. Physiol Mol Biol Plants. 2021; 27: 2201–2214
    41. Jaleel C.A., Manivannan P., Sankar B., et al. Pseudomonas fluorescens Enhances Biomass Yield and Ajmalicine Production in Catharanthus roseus under Water Deficit Stress. Colloids Surf B. 2007; 60: 7–11.
    42. Arshad M., Shaharoona B., Mahmood T. Inoculation with Plant Growth Promoting Rhizobacteria Containing ACC-Deaminase Partially Eliminates the Effects of Water Stress on Growth, Yield and Ripening of Pisum sativum L. PEDOSPH. 2008; 18: 611-620.
    43. 43.Ghorbanpour M., Hatami M., Khavazi K. Role of Plant Growth Promoting Rhizobacteria on Antioxidant Enzyme Activities and Tropane Alkaloids Production of Hyoscyamus niger under Water Deficit Stress. Turk J Biol. 2013; 37: 350-360.
    44. Batool T., Ali SH., Seleiman M., Naveed N.H., Ali A., Ahmed KH., Abid M., Rizwan M., Shahid M.R., Alotaibi M., Al Ashkar E., Mubushar M. Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci Rep. 2020; 10: 1-19.
    45. Abdalla M.M., El-Khoshiban N.H. The influence of water stress on growth, relative water content, photosynthetic pigments, some metabolic and hormonal contents of two Triticum aestivum cultivars. J appl sci res. 2007; 3(12): 2062-2074.
    46. Ahmad A., Aslam Z., Ilyas M.Z., Ameer H., Mahmood A., Rehan M. Drought stress mitigation by foliar feeding of potassium and amino acids in wheat. J Environ Agric Sci. 2019; 18:10-18.