The Effect of Cellulase Enzyme on Some Biochemical Traits of Licorice (Glycyrrhiza glabra L.) under Cell Suspension Culture Conditions

Document Type : Research Paper

Authors

1 Assistant professor, Department of Plant Breeding and biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran

2 Assistant professor, Horticulture Crops Research Department, Sistan Agricultur and Natural Resources Research and Education Centre, AREEO, Zabol, Iran

3 Institute of Biotechnology, University of Zabol, Zabol, Iran

4 Institute of Agronomy Research, Faculty of Agriculture, University of Zabol, Zabol, Iran

Abstract

Licorice roots and rhizomes have numerous secondary metabolites, which are used as medicine. Cell and tissue culture of medicinal plants can be used for the production of secondary metabolites, and the use of elicitors, stimulates the production and increase of these valuable compounds. For this purpose, the effect of cellulase enzyme from Aspergilus Nigare as a fungal elicitor in cell suspension culture conditions as a completely randomized design with 3 replications, on traits such as phenol, flavonoid, antioxidant activity, carbohydrate, tannin, protein, nitrogen, and proline levels were tested in untreated, late-harvesting callus conditions, 24 hours, 48 ​​hours and 72 hours after treatment with cellulase. Variance analysis showed that there is a statistically significant difference between the studied treatments in all traits. A comparison of the mean traits also showed that phenol, flavonoid, antioxidant activity, tannin, and proline traits showed the highest increase in the treatment 72 hours after the treatment, and the carbohydrate, nitrogen, and protein traits showed a decreasing trend compared to the control treatment. Regarding the increase in the amount of phenol, flavonoid, tannin, and antioxidant activity during the treatment with cellulase, it can be said that cellulase, like other fungal elicitors, stimulates and induces the production of secondary metabolites in cell suspension culture conditions and confirms the possibility of the presence of secondary metabolites in callus and cell suspension of this plant in addition to Licorice root and rhizome. A decrease in nitrogen and protein and an increase in proline have also been reported due to the role of nitrogen in the accumulation of amino acids and stimulating the accumulation of flavonoids in plants.

Keywords


  1. Mirhaidar H., Licorice. Herbal plants used in the treatment of diseases and education, Office of Islamic culture publication, 1993; 3: 6-8.
  2. Baba M., Shigeta S. Antiviral activity glycyrrhizin against varicella zoster virus in vitro. Antivi Rese. 1983; 7(2): 3-9.
  3. Lentihet M., Nygren A. Licorice an old drug and currently a candy with metabolic effects. J Oral Pathol Medic. 1997; 26 (1): 3892-3894.
  4. Blumenthal M., Goldberg A., Brinckmann J. Herbal Medicine: Expanded Commission E Monographs. Newton. American Botanical Council. 2000; 233-236.
  5. Li Y.J., Chen J., Li Y., Li Q., Zheng Y.F., Fu Y., Li P. Screening and characterization of natural antioxidants in four Glycyrrhiza species by liquid chromatography coupled with electrospray ionization quadrupole time of flight tanden mass spectrometry. J Chromato. 2011; 1218 (45): 8181-8191.
  6. He J.X., Akao T., Nishino T., Tani T. The influence of commonly prescribed synthetic drugs for peptic ulcer on the pharmacokinetic fate of glycyrrhizin from Shaoyao-Gancao-tang. Biolo Pharmac Bulletin. 2001; 24: 1395-1399.
  7. Park H.Y., Park S.H., Yoon H.K., Han M.J., Kim D.H. Anti-allergic activity of 18beta-glycyrrhetinic acid-3-O-beta-Dglucuronide. Arch Pharma Rese. 2004; 27: 57-60.
  8. Fiore C., Eisenhut M., Krausse R., Ragazzi E., Pellati D., Armanini D., Bielenberg J. Antiviral effects of Glycyrrhiza species. Phyto Rese. 2008; 22: 141-148.
  9. Fukuchi K., Okudaira K., Adachi R., Odai-Ide S., Watanabe H., Ohno M., Yamamoto T., Kanamoto S., Terakubo H., Nakashima, et al. Antiviral and antitumor activity of licorice root extracts. Vivo. 2016; 30: 777-785.
  10. Moses T., Pollier J., Faizal A., Apers S., Pieters L., Thevelein J.M., Geelen D., Goossens A. Unraveling the Triterpenoid Saponin Biosynthesis of the African Shrub Maesa lanceolate. Molec Plant. 2015; 8: 122-135.
  11. Haralampidis K., Trojanowska M., Osbourn A.E. Biosynthesis of Triterpenoid Saponins in Plants. Advan Bioche Engine Biotech. 2002; 75: 32-44.
  12. Baque M.A., Moh SH., Ej L., Zhong J.J., Paek K.Y. Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotech Advan. 2012; 30: 1255-1264.
  13. Poornananda M.N., Jameel M.A. Impact of abiotic elicitors on in vitro production of plant secondary metabolites: A Review. J Advan Rese Biotech. 2016; 1(1): 1-7.
  14. Shulaev V., Cortes D., Miller G., Mittler R. Metabolomics for plant stress response. Physiolo Plant. 2008; 132: 199-208.
  15. Barz W., Mackenbrock U. Constitutive and elicitation induced metabolism of isoflavones and pterocarpans in chickpea (Cicer arietinum) cell suspension cultures. Plant Cell Tissue Organ culture. 1994; 38: 199-211.
  16. Rao S.R., Ravishankar G.A. Plant cell cultures: Chemical factories of secondary metabolites. Biotech Advan. 2002; 20(2): 101-153.
  17. 17 Carpita N.C., Gibeaut D.M. Structural models of primary cell walls in flowering plants, consistency of molecular structure with the physical properties of the walls during growth. Plant Jour. 1993; 3:1-30.
  18. Threlfall D.R., Whitehead I.M., Coordinated inhibition of squalene synthetase and induction of enzymes of sesquiterpenoid phytoalexin biosynthesis in cultures of Nicotiana tabacum. Phytochem. 1988; 27: 2567-2580.
  19. Whitehead I.M., Ewing D.F., Threlfall D.R., Sesquiterpenoids related to the phytoalexin debneyol from elicited cell suspension cultures of Nicotiana tabacum. Phytochem. 1988; 27: 1365-1370.
  20. Ma C. Cellulase elicitor induced accumulation of capsidiol in Capsicum annuum L. suspension cultures. Biotech Lett. 2008; 30: 961-965.
  21. Mialoundama A.S., Heintz D., Debayle D., Rahier A., Camara B., Bouvier F. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco. Plant Physiol. 2009; 150: 1556-1566.
  22. Yana M.A., Chao H., Jinyin C., Haiyun L.i., Kun H.E., Aixin L., Duochuan L. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity. Molec Plant Pathol. 2015; 16(1): 14-26.
  23. Parsaeimehr A., Mousavi B. Producing friable callus for suspension culture in Glycyrrhiza glabra. Adv Envir Biologi. 2009; 3 (2): 125-128.
  24. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analy Bioche. 1976; 72: 248-254.
  25. 25- Bates L.S., Waldern R.P., TearI. D. Rapid determination of free proline for water stress studies. Plant Soil. 1973; 39: 205-207.
  26. 26- Slinkard K., Singleton V.L. Total phenol analysis automation and comparison with manual methods. Ameri Jour Enolo Viticul. 1977; 28: 49-55.
  27. Chang C., Yang M., Wen H., Chern J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002; 10:178-182.
  28. Huang D.J., Ou B.X., Prior R.L. The chemistry behind antioxidant capacity assays. J Agri Food chem. 2005; 53:1841-1856.
  29. Ali M., Husain shahnaz S., Ansari shahid H. Composition of the volatile oil of Zingiber officinale roscoe rhizomes and effects of physical factors on the oil. Inter Rese J Pharm. 2011; 2(9): 173-177.
  30. AOAC, Official Methods of Analysis. 17th Edition, The Association of Official Analytical Chemists, Gaithersburg. 2000; MD, USA.
  31. Yana M.a., Chao H., Jinyin C., Haiyun L.I., Kun H.E., Aixin L., Duochuan L. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity. Mole Plant Patho. 2015; 16(1): 14-26.
  32. Ma C. Cellulase elicitor induced accumulation of capsidiol in Capsicum annuum L. suspension cultures. Biotech Lett. 2008; 30: 961-965.
  33. Wang J., Qian J., Yao L., Lu Y. Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Biores Bioproce. 2015; 2(5): 1-9.
  34. Srivastava M., Singh G., Sharma S., Shukla S., Misra P. Elicitation Enhanced the Yield of Glycyrrhizin and Antioxidant Activities in Hairy Root Cultures of Glycyrrhiza glabra L. J Plant Growth Regu. 2019; 38: 373-384.
  35. Lashin I.I., Elhaw M.H. Evaluation of secondary metabolites in callus and tissues of physalis peruviana. Inter J Modern Bota. 2016; 6(1): 10-17.
  36. Cheng S., Zhang W., Sun N., Xu F., Li L., Liao Y., Cheng H. Production of flavonoids and terpene lactones from optimized Ginkgo bilobatissue culture. Notulae Botan Horti Agrob. 2014; 42(1): 88-93.
  37. Al-Kheyri J.M., Madhava Naik P. Elicitor-Induced Production of Biomass and Pharmaceutical Phenolic Compounds in Cell Suspension Culture of Date Palm (Phoenix dactylifera L.). Molec. 2020; 45(4669): 1-10.
  38. Mendoza D., Cuaspud O., Arias J.P., Ruiz O., Rias M. Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana. Biotech Rep. 2018; 3(19): 1-8.
  39. Chung III.M.,  Rekha  K.,  Rajakumar  G.,  Thiruvengadam M. Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb). Acta Biol Hung. 2017; 68(1): 88-100.
  40. Mamdouh D., Smetanska I. Optimization of Callus and Cell Suspension Cultures of Lycium schweinfurthii for Improved Production of Phenolics, Flavonoids, and Antioxidant Activity. Horticul. 2022; 8 (394): 1-17.
  41. Szczykutowicz M.K., Dziurka M., Blažević I., Đulović A., Apola A., Ekiert H., Szopa A. Impacts of elicitors on metabolite production and on antioxidant potential and tyrosinase inhibition in watercress microshoot cultures. Appl Micro Biotech. 2022; 106: 619-633.
  42. Fan G.Z., Wang X.D., Li X.C., Fan J.S., Zhai Q., Zhan Y.G. Effect of fungal elicitor on carbon and nitrogen status and triterpenoid production in cell suspension cultures of Betula platyphylla Suk. J Medi Plants Res. 2011; 5(22): 5413-5422.
  43. Van Dam N.M., De-Jong T.J., Iwasa Y., Kubo T. Optimal distribution of defenses: are plants smart investors? Func Ecol. 1996; 10: 128-136.
  44. Liu W., Zhu D.W., Liu D.H., Geng M.J., Hamilton D.P. Influence of nitrogen on the primary and secondary metabolism and synthesis of flavonoids in Chrysanthemum morifolium Ramat. J Plant Nutr. 2010; 33(2): 240-254.
  45. Li Z., Jiang H., Yan H., Jiang X., Ma Y., Qin Y. Carbon and nitrogen metabolism under nitrogen variation affects flavonoid accumulation in the leaves of Coreopsis tinctoria. Peer Jour. 2021; 9: 1-23.
  46. 46- Cipollini M.L., Paulk E., Cipollini D.F. Effect of nitrogen and water treatment on leaf chemistry in horsenettle (Solanum carolinense), and relationship to herbivory by flea beetles (Epitrix spp.) and tobacco hornworm (i). J Chem Ecol. 2002; 28: 2377-2398.
  47. Lou Y., Baldwin I.T. Nitrogen supply influences herbivore-induced direct and indirect defense and transcriptional response in Nicotiana attenuate. Plant Physiol. 2004; 135: 496-506.
  48. Cao Y.W., Qu R.J., Miao Y.J., Tang X.Q., Zhou Y., Wang L., Geng L. Untargeted liquid chromatography coupled with mass spectrometry reveals metabolic changes in nitrogen-deficient Isatis indigotica Fortune. Phytochem. 2019; 166: 1-12.
  49. Heydari H.R., Chamani E., Esmaeilpour B. Effect of total nitrogen content and NH4/NO3 ratio on biomass accumulation and secondary metabolite production in cell suspension culture of Salvia nemorosa. Iran J Gene Plant Breed. 2020; 9(1): 17-27.
  50. Li H., Wang Z., Liu Y. Review in the studies on tannins activity of cancer prevention and anticancer. Pubmed (in Chinese). 2003; 26(6): 444-448.
  51. Dharmananda S. Gallnuts and the uses of tannins in Chinese Medicine. In: Proceedings of institute for Tradit, Med Portland Oregon, 2003.
  52. Shinwari Z.K., Khan I., Naz S., Hussain A. Assessment of antibacterial activity of three plants used in Pakistan to cure respiratory diseases. Afr J Biotech. 2009; 8(24): 7082-7086.
  53. 53- Patil S.M., Patil M.B., Sapkale G.N. Antimicrobial activity of Glycyrrhiza glabra Linn. Roots. Int J Chem Sci. 2009; 7(1): 585-591.
  54. Hojo H., Sato J. Antifungal activity of licorice (Glycyrrhiza glabra) and potential applications in beverage. Foods Food Ingred J. 2002; 203: 27-33.
  55. Tharkar P.R., Tatiya A.U., Shinde P.R., Surana SJ, Patil UK. Antifungal activity of Glycyrrhiza glabra Linn. and Emblica officinalis Gaertn. by direct bioautography method. Int J Pharm Res. 2010; 2: 1547-1549.
  56. Wang Z.Y., Athar M., Bickers D.R. Licorice in foods and herbal drugs: chemistry, pharmacology, toxicology and uses. In: Mazza G, Oomah BD (eds) Herbs, botanicals and teas. Technomic Publishing Co, Lancaster, PA. 2000; 321-335.
  57. Chen F., Chan Kh., Jiang Y., Kao R.Y.T., Lu H.T., Fan K.W., Cheng V.C.C., Tsui W.H.W., Hung I.F.N., Lee T.S.W., Guan Y., Peiris J.S.M., Yuen K.Y. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol. 2004; 31(1): 69-75.
  58. Orlent H., Hansen B.E., Willems M., Brouwer J.T., Huber R., Kullak-Ublick G.A., Gerken G., Zeuzem S., Nevens F., Tielemans W.S.M., Zondervan P.E., Lagging M., Westin J., Schalme S.M. Biochemical and histological effects of 26 weeks of glycyrrhizin treatment in chronic hepatitis C: a randomized phase II trial. J Hepatol. 2006; 45(4): 539-546.
  59. Fiore C., Eisenhut M., Krausse R., Ragazzi E., Pellati D., Armanini D., Bielenberg J. Antiviral effects of Glycyrrhiza species. Am J Chin Med. 2009; 37(2): 383-394.
  60. Mialoundama A.S., Heintz D., Debayle D., Rahier A., Camara B., Bouvier F. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco. Plant Physiol. 2009; 150: 1556-1566.