Higher Biomass and Biochemical Compounds of Stevia rebaudiana Through Exogenous Gibberellic Acid (GA) And Kinetin (KN) hormones Treatments

Document Type : Research Paper

Authors

1 Genetic and Plant Production Department, Agricultural Faculty of Shirvan, University of Bojnord, Bojnord, Iran

2 Horticultural Sciences and Engineering Department, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

Abstract

Hormones are chemical messengers that regulate various physiological processes in plants. Stevia growth is affected by them, so this study investigated how gibberellic acid (GA) and kinetin (KN) affect it.  Two RCBD experiments were conducted in 2016 in Shirvan, Iran, to study gibberellic acid (GA) and kinetin (KN) hormones. First experiment included the following GA treatments: 1. control (no GA) 2. 100 ppm 3. 200 ppm 4. 300 ppm (PPM). In the second experiment, KN was included in the treatments: 1. control (no KN) 2.  20 ppm 3.  40 ppm 4. 60 ppm. At all concentrations of KN and GA, plant height, leaf number, leaf dry matter, and biomass significantly enhanced while yield index decreased. Additionally, although GA application decreased non-reducing sugars (TSSN) and total soluble sugars (TSS), KN at 40 and 60 ppm increased TSS. In contrast to KN treatments, GA treatments improved total stevia glycosides (TSGs). Furthermore, FLV was not affected by GA, but plants treated with KN 60(KN at 60) ppm had the highest FLV. All GA concentrations induced more CHL b than control. Additionally, it boosted N, P, and K, however, only KN at 40 and 60 ppm increased N and K. Overall, the positive effects of both hormones are dose-dependent; while KN treatment was ineffective in terms of TSG productivity, GA treatment was beneficial.

Keywords

Main Subjects


  1. Wang W., Jin N., Mo X., Wu J., Lu J., Lou Y. Exogenous gibberellin GA3 enhances defense responses in rice to the brown planthopper Nilaparvata lugens (Stål). J. Plant Biology. 2021; 64(5), 379-387.
  2. Talevi A. Potential medicinal effects and applications of stevia constituents. Phytochemistry Reviews. 2021; 1-18. https://doi.org/10.1007/s11101-021-09753-5
  3. Pazuki A., Aflaki F., Yücesan B., Gürel S. Effects of cytokinins, gibberellic acid 3, and gibberellic acid 4/7 on in vitro growth, morphological traits, and content of steviol glycosides in Stevia rebaudiana. Plant Physiology and Biochemistry. 2019;137:154-161.
  4. Bao S., Hua C., Shen L., Yu H. New insights into gibberellin signaling in regulating flowering in Arabidopsis. J. Integrative Plant Biology. 2020; 62(1), 118-131.
  5. Asif R., Yasmin R., Mustafa M., Ambreen A., Mazhar M., Rehman A. Ahmad M. Phytohormones as Plant Growth Regulators and Safe Protectors against Biotic and Abiotic Stress. Plant Hormones: Recent Advances, New Perspectives and Applications. 2022;115.
  6. Simlat M., Skrzypek E., Warchoł M., Maciaszek I., Ptak A. Evaluation on Stevia rebaudiana Bertoni seed germination and seedling development under phytohormones treatment. Scientia Horticulturae. 2019;257:108717.
  7. He J., Xin P., Ma X., Chu J. Wang G. Gibberellin metabolism in flowering plants: an update and perspectives. Frontiers in Plant Sci. 2020; p.532.
  8. Ahanger M.A., Aziz U., Alsahli A.A., Alyemeni M.N., Ahmad P. Combined kinetin and spermidine treatments ameliorate growth and photosynthetic inhibition in Vigna angularis by up-regulating antioxidant and nitrogen metabolism under cadmium stress. Biomolecules. 2020;10(1):147.
  9. Yu Y., Li Y., Yan Z., Duan X. The role of cytokinins in plant under salt stress. J. Plant Growth Regulation. 2021; 1-13.
  10. Hajihashemi S. Physiological, biochemical, antioxidant and growth characterizations of gibberellin and paclobutrazol-treated sweet leaf (Stevia rebaudiana B.) herb. Journal of Plant Biochemistry and Biotechnology. 2018; 27:237-240.
  11. Yoneda Y., Shimizu H., Nakashima H., Miyasaka J., Ohdoi K. Effect of treatment with gibberellin, gibberellin biosynthesis inhibitor, and auxin on steviol glycoside content in Stevia rebaudiana Bertoni. Sugar Tech. 2018; 20(4):482-491.
  12. Basharat S., Huang Z., Gong M., Lv X., Ahmed A., Hussain I., Liu L. A review on current conventional and biotechnical approaches to enhance biosynthesis of steviol glycosides in Stevia rebaudiana. Chinese J. Chemical Engineering. 2021;30:92-104.
  13. Karim Z., Uesugi D., Nakayama N., Hossain M.M., Ishihara K., Hamada H. Identification of stevioside using tissue culture-derived stevia (Stevia rebaudiana) leaves. Biochemistry insights. 2015; 8, BCI-S30378.
  14. Kashefi B., Naeimi M., Mazaheri E. (2020). Effect of Growth Regulators on Optimization of Stevia (Stevia rebaudiana) Production in vitro. J. Medicinal plants and By-product. 2020;9(1):1-8.
  15. Pedone‐Bonfim M.V., Lins M.A., Coelho I.R., Santana A.S., Silva F.S., Maia L.C. Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina (Vell.) Brenan) seedlings. J. Sci. Food & Agric. 2013;93(6):1479-1484.
  16. Bao J., Cai Y., Sun M., Wang G., Corke H. Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J. Agric. Food Chem. 2005; 53(6):2327-2332.
  17. Omokolo, D.N., Tsala G. N. and Djocgoue, P. F. Changes in carbohydrate, amino acid and phenol contnts in cocoa pods from three clones after infection with phytophtora megakarya Bra and Grif. Annals of Botany. 1996;86:29-36.
  18. McCready R.M., Guggolz J., Silviera V. Owens H.S. Determination of starch and amylase in vegetables. Analytical Chemistry. 1950;22:1156-1158.
  19. Rehman Z.U., Salariya A.M., Zafar S.I. Effect of processing on available carbohydrate content and starch digestibility of kidney beans (Phaseolus vulgaris L.). Food Chemistry. 2001; 73(3):351-355.
  20. Hiscox J.D., Israelstam G.F. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian J. Botany. 1979; 57(12):1332-1334.
  21. Chang S.K., Zhang Y. Protein analysis. In Food Analysis. Springer, Cham. 2017;315-331.
  22. Naveed M., Hussain M.B., Zahir Z.A., Mitter B., Sessitsch A. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regulation. 2014; 73(2):121-131.
  23. Fernandes A.M., Soratto R.P. Nutrition, dry matter accumulation and partitioning and phosphorus use efficiency of potato grown at different phosphorus levels in nutrient solution. Revista Brasileira de Ciência do Solo. 2012; 36:1528-1537.
  24. Yang Y., Huang S., Han Y., Yuan H, Gu C., Wang Z. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana. Plant Physiol Biochem. 2015; 86:174–180.
  25. Karimi M., Ahmadi A., Hashemi J., Abbasi A., Tavarini S., Pompeiano, A., Angelini L.G. Plant growth retardants (PGRs) affect growth and secondary metabolite biosynthesis in Stevia rebaudiana Bertoni under drought stress. South African J. Botany. 2019; 121, 394-401. Doi:
  26. Tariq Aftab M., Masroor A.Khan, Idrees M., Naeem M., Singh M., Ram M. Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. J. Plant Interactions. 2010;5:4:273-281.
  27. Gurmani A.R., Khan S.U., Ali A., Rubab T., Schwinghamer T., Jilani G., Zhang J. Salicylic acid and kinetin mediated stimulation of salt tolerance in cucumber (Cucumis sativus L.) genotypes varying in salinity tolerance. Horticulture, Environment, and Biotechnology. 2018; 59(4):461-471.
  28. Rafique M., Naveed M., Mustafa A., Akhtar S., Munawar M., Kaukab S., Salem M.Z. The combined effects of gibberellic acid and rhizobium on growth, yield and nutritional status in chickpea (Cicer arietinum L.). Agronomy. 2021;11(1):105.
  29. Islam S., Mohammad F. Plant growth regulators modulate photosynthetic efficiency, antioxidant system, root cell viability and nutrient acquisition to promote growth, yield and quality of Indian mustard. Acta Physiologiae Plantarum. 2022;44(12):1-17. -8
  30. Kim Y.H., Hamayun M., Khan A.L., Na C.I., Kang S.M., Han H.H., Lee I. Exogenous application of plant growth regulators increased the total flavonoid content in Taraxacum officinale Wigg. African J. Biotechnology. 2009;8(21).
  31. Wojtania A., Skrzypek E., Gabryszewska, E. Morphological and biochemical responses to gibberellic acid in Magnolia× ‘Spectrum’in vitro. Acta Biologica Cracoviensia s. Botanica. 2016;58(1).