The Effect of Biochar Application and Planting Pattern on the Physiological and Biochemical Traits of Garden Thyme (Thymus vulgaris L.) at Different Levels of Irrigation

Document Type : Research Paper

Authors

1 Department of Agronomy, Takestan Branch, Islamic Azad University, Takestan, Iran

2 Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, Iran

Abstract

Water scarcity is a principal limitation for production in arid and semi-arid regions. Biochar increases the water-holding capacity of the soil in drought-stress conditions. To investigate the effect of biochar and planting patterns on the physiological, biochemical, and thyme (Thymus vulgaris L. (essential oil traits, an experiment was carried out as a factorial split-plot based on a randomized complete block design for two crop years (2017-2019). The findings revealed that furrow irrigation treatments, both fixed and variable, decreased the flowering branches' yield, relative water content, total chlorophyll, Chlorophyll a, and thymol percentage. Instead the essential oil yield, proline content, soluble sugar content, chlorophyll b, and carvacrol under these treatments increased. The decrease in flowering branches yield and the relative water content in variable alternate furrow irrigation was lower compared to fixed alternate furrow irrigation. Biochar application reduced the effects of drought stress caused by variable alternate furrow irrigation and fixed alternate furrow irrigation treatments but had no significant impact on chlorophyll b, thymol percentage, and total chlorophyll. The highest carvacrol and thymol percentages were obtained in fixed alternate furrow irrigation, variable alternate furrow irrigation treatments, and irrigation of all furrows, respectively. The planting pattern did not affect flowering branch yield, relative water content, soluble sugars content, and proline content. The highest essential oil yield (24.73 kg/ha) was obtained in the treatment combination of variable alternate furrow irrigation, biochar application, and Planting double rows of thyme on the ridge. The study recommended that farmers must observe alternate furrow irrigation methods and biochar application (amount 8 t/ha) as a better option in the limited water environment.
ABBREVIATION
FI: Full irrigation, FAFI: Fixed Alternate Furrow Irrigation, VAFI: Variable Alternate Furrow Irrigation, POR: planting a single row of thyme on the ridge, PTR: planting double rows of thyme on the ridge, BC: Biochar application, NBC: No application of biochar, FBY: Flowering branch yield, SUGC: Soluble sugars content, RWC: relative leaf water content, Chl a: Chlorophyll a, Chl b: Chlorophyll b, T Chl: Total Chlorophyll, EOY: Essential oil yield, CVR: Carvacrol, and THYM: Thymol.

Main Subjects


  1. KhasheiSiuki A., Shahidi A., Dastorani M., Fallahi H.R., Shirzadi F. Yield and Quality of Sesame (Sesamum indicum L.) improve by water preservative materials under normal and deficit irrigation in birjand. Agrotech. Ind. Crops. 2023; 3(3): 121-132. https://doi.org/10.22126/ATIC.2023.9167.1098.
  2. Yadav A.N., Yadav N. Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta sci agric. 2018; 2 (6): 85-89.
  3. Liu C., Liu F., Ravnskov S., Rubæk G.H., Sun Z., Andersen M.N. Impact of wood biochar and its interactions with mycorrhizal fungi, phosphorus fertilization and irrigation strategies on potato growth. J. Agron. Crop Sci. 2017; 203(2):131-145.
  4. Shao H.B., Chu L.Y., Jaleel C.A., Manivannan P., Panneerselvam, R., Shao, M.A. Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit. Rev. Biotechnol. 2009; 29, 131-151.
  5. Bodner, G., Nakhforoosh, A.; Kaul, H.P. Management of crop water under drought: A review. Agron. Sustain. Dev. 2015, 35, 401-442.
  6. Satriani A., Catalano M., Scalcione E. The role of superabsorbent hydrogel in bean crop cultivation under deficit irrigation conditions: A case-study in Southern Italy. Agric Water Manag. 2018; 195: 114-119. https://doi.org/10.1016/j.agwat. 2017. 10.008
  7. Osooli H., Karimi A., Shirani H. Biochar amount and particle sizes effects on plant available water, stomatal resistance, root dry weight and water use efficiency of wheat. Appl. Soil. Res. 10(2): 66-78.
  8. Verheijen F., Jeffery S., Bastos A.C., Van der Velde M., Diafas I. Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. European Commission. 2010, 166p.
  9. Rizwan M., Ali S., Qayyum M.F., Ibrahim M., Zia-ur-Rehman M., Abbas T., Ok Y.S. Mechanisms of biocharmediated alleviation of toxicity of trace elements in plants: a critical review. Environ. Sci. Pollut. Res. 2016; 23:2230-2248. https://doi.org/10.1007/s11356-015-5697-7.
  10. Gao Y., Shao G., Lu J., Zhang K., Wu S., Wang Z. Effects of biochar application on crop water use efficiency depend on experimental conditions: A meta-analysis. Field Crops Res. 2020; 249: 107763.
  11. Langroodi A.R.S., Nora R. Effect of different levels of biochar on physiological properties of squash (Cucurbita pepo L.) under water stress. Plant Environ Physiol. 2018; 13(49): 13-32.
  12. Liu X., Wang H., Liu C., Sun B., Zheng J., Bian R., Drosos M., Zhang X., Li, L. and Pan G. Biochar increases maize yield by promoting root growth in the rainfed region. Arch Agron Soil Sci. 2020; 1-14.
  13. Lu, J.J.; Gao, C.H.; Li, J.H.; Jin, D.S.; Lu, C.D.; Dong, Y.Z. Effect of straw biochar on soil nutrients and corn growth in Loess Area. Chin. Agron. Bull. 2017; 33, 92.
  14. Ahmad M., Ok Y.S., Kim B.Y., Ahn J.H., Lee Y.H., Zhang M., Moon D.H., Al-Wabel M.I., Lee S.S. Impact of soybean stover-and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. J. Environ Manage. 2016; 166: 131-139. https://doi.org/10.1016/j.jenvman.2015.10.006.
  15. Blandino M., Reyneri A., Vanara F. Effect of plant density on toxigenic fungal infection and mycotoxin contamination of maize kernels. Field Crops Res. 2008; 106 (3): 234-241. https://doi.org/10.1016/j.fcr.200712.004.
  16. Whaley J.M., Kirby E.J.M., Spink J.H., Foulkes M.J., Sparkes D.L. Frost damage to winter wheat in the UK: the effect of plant population density. Eur J. Agron. 2004; 21:105-115. https://doi.org/10.1016/S1161-0301 (03)00090-X.
  17. Hossain A., Ishimine Y., Motomura K., Akamine H. Effects of planting pattern and planting distance on growth and yield of turmeric (Curcuma longa L.). Plant Prod. Sci. 2005; 8(1): 95-105.
  18. Nitisha S., Girjesh K. Biomass productivity of Green Manure crop Sesbania cannabina Poir (Dhaincha) in different Planting Density Stress. Int. J. Biol. Sci. 2013; 2(9): 48-53.
  19. Nur J. Evaluation of alternate, fixed and convectional furrow irrigation under different water application level on cabbage growth parameters and yield component in eastern oromia. Civ Environ Res. 2018; 10 (4): 1-10.
  20. Mitchell J.P., Shennan C., Grattan S.R., May D.M., Tomato fruit yields and quality under water deficit and salinity. J. Amer. Soc. Hort. Sci. 1991; 215-221.
  21. Jafari N., Aghayari F., Paknejad F. Effect of different deficit-irrigation methods on yield and water use efficiency of wheat (Parsi Cultivar). J. Crop Ecophysiol; 201812 (4): 581-598.
  22. Akele Z. Evaluation of alternate, fixed and conventional furrow irrigation systems with different water application level on onion yield in dubti, afar, ethiopia. Ind. Eng. Lett. 2019; 9 (5): 15-22. https://doi.org/10.7176/IEL.
  23. El-Halim A.A. Impact of alternate furrow irrigation with different irrigation intervals on yield, water use efficiency, and economic return of corn. Chil. J. Agric. Res. 2013; 73(2): 175-180. https://doi.org/10.4067/S0718-5839 2013000200014.
  24. Sepaskhah, A.R., Hosseini, S.N. Effects of alternate furrow irrigation and nitrogen application rates on yield and water- and nitrogen-use efficiency of winter wheat (Triticum aestivum L.). Plant Prod. Sci. 2008; 11(2): 250-259.
  25. Guine R.P.F., Goncalves F.J. Bioactive compounds in some culinary aromatic herbs and their effects on human health. Mini-Rev. J Med Chem. 2016; 16: 855-866. https://doi.org/10.2174/1389557516666160211120540.
  26. Norouzi Y., Ghobadi M., Saeidi M., Dogan H. Effect of nitrogen and cytokinin on quantitative and qualitative yield of Thyme (Thymus vulgaris L.). Agrotech Ind Crops. 2021; 1(1): 52-60. https://doi.org/10.22126/ET IC.2021.6481.1012.
  27. Olsen, S.R., Sommers L.E. Phosphorus. In: Page, A.L., Miller, R.H. and Keeney, D.R., Eds., Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. American Society of Agronomy Inc., Madison. 1982, 403-427.
  28. Adib, M., Rangzan, N., Naserin, A. Effect of variable and fixed alternate furrow irrigation on salinity, phosphorous and potassium concentration in soil of sugarcane field. Agric. Eng. 2022; 45(1): 97-117. https://doi.org/10.22055/AGEN.2022.41 101.1634.
  29. Allen R.G., Pereira, L. Raes S., Smith, M.D. Crop evapotranspiration: guidelines for computing crop requirements, Irrigation and Drainage Paper no. 56, FAO, Rome, Italy. 1998, 300 pp.
  30. Khaydar D., Xi C., Yue H., Ilkhom M., Tie L., Friday O., Farkhod A., Khusen G., Gulkaiyr O. Investigation of crop evapotranspiration and irrigation water requirement in the lower Amu Darya River Basin, Central Asia. J. Arid. Land. 2021; 13(1): 23-39. https://doi.org/10.1007/s40333-021-0054-9.
  31. Kamali, M.I., Ansari, H. Determination of appropriate irrigation water depth and its sensitivity to water price using the production function. Iran. J. Soil Water Res. 2023; 17 (2):1-14. https://doi.org/10.22034/ IWRJ.2 023.14134.2466.
  32. Singh, V.P., Su, Q. Irrigation engineering: Principles, Processes, Procedures, Design, and Management. New york. NY: Cambridge University Press. 2022. https://doi.org/10.1017/9781009049610.
  33. Hipkins, M.F. and Baker, N.R. Spectroscopy. In: Hipkins, M.F. and Baker, N.R. (eds.), Photosynthesis energy transduction: A practical approach, Oxford, IRL Press. 1986; 51-101.
  34. Mata, C.G., Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol. 2001; 126 (3): 1196-1204. https://doi.org/10.1104/pp.126.3.1196.
  35. Bates, I.S., Waldren R.P., Teare I.D. Rapid determination of free proline for water-stress studies. Plant and Soil. 1973; 39: 205-207. http://dx.doi.org/10.1007/BF00018060.
  36. Hizukuri S., Takeda Y., Maruta N. Molecular structural characteristics of rice starch. Carbohydr. Res. 1989; 189, 227-235. https://doi.org/10.1016/0008-6215(89)84099-6
  37. Alizadeh-Behbahani B., Tabatabaei-Yazdi F., Shahidi F., Mohebbi M., Zanganeh H. Investigation of the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the aqueous and ethanolic avicennia marina extracts on gram positive and gram negative bacteria “in Vitro”. Sadra. Med. Sci. J. 2014; 2: 123-134.
  38. Samsam-Shariat S. Extraction, identification and analysis of active components of medical herbs. Iran. Mani Publication. 2007, pp: 53-57.
  39. Dastborhan, S., Zehtab-Salmasi, S., Nasrollahzadeh, S., Tavassoli, A.R. Effect of biofertilizers and different amounts of nitrogen on yield of flower and essential oil and nitrogen use efficiency of German chamomile (Matricaria chamomilla L.). Iranian J. Med. Arom. Plants. 2011; 27(2): 290-305.
  40. Kaveh S.H., Zeinali H., Safaei L., Madah-Arefi H., Aflakian S. Comparison of morphological and phytochemical traits in different populations of Thymus kotschyanus Boiss. & Hohen. with Thymus vulgaris L. genotypes. Iranian J. Aromat. Plants. 2013; 29 (1): 116-129. http://dx.doi.org/10.22092/ijmapr.2013.2894.
  41. Akram H.M., Sattar A., Ali A., Nadeem M. Agro‐physiological performance of wheat genotypes under normal moisture and drought conditions. Iranian J. Plant Physiol. 2012; 2: 361-374.
  42. Tilaye A., Ahmed B., Gemeda F. Evaluation of different furrow irrigation systems and water levels on potato at oda sirba scheme. J. soil water sci. 2022; 6 (1): 244-252. https://doi.org/10.36959/624/451.
  43. Abdipour M., Hosseinifarahi M., Najafian S. Effects of humic acid and cow manure biochar (cmb) in culture medium on growth and mineral concentrations of basil plant. Int. J. Hortic. Sci. Technol. 2019; 6: 27-38.
  44. Kamyama K., Miyamoto T., Shiono T. Influent of biochar incorporation 487 on TDR-based soil water content measurements. Eur. J. Soil. Sci. 2014; 65(1):105-112.
  45. Cornelissen G., Martinsen V., Shitumbanuma V. undefined. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. mdpi.com. Agronomy VA. 2013; 3: 256-274. https://doi.org/10.3390/agronomy3020 256.
  46. Hazzoumi Z., Moustakime Y., Elharchli E., Amrani-Joutei K. Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chem. Biol. Technol. Agric. 2015; 2:10-15.
  47. Zhao W., Liu L., Shen Q., Yang J., Han X., Tian F., Wu J. Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water. 2020; 12, 2127. https://doi.org/10.3390/w12082127.
  48. Kiani S.P., Maury P., Sarrafi A., Grieu P. QTL analysis of chloropH yll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci. 2008; 175: 565-573.
  49. Zulfiqar B., Raza M.A.S., Saleem M.F., Aslam M.U., Iqbal R., Muhammad F., Amin J., Ibrahim M.A., Khan I.H. Biochar enhances wheat crop productivity by mitigating the effects of drought: Insights into physiological and antioxidant defense mechanisms. PLoS ONE. 2022; 17(4): e0267819. https://doi.org/10. 1371/journal.pone.0267819.
  50. Ali S., Rizwan M., Qayyum M.F., Ok Y.S., Ibrahim M., Riaz M., Arif M.S, Hafeez F., Al-Wabel M.I., Shahzad A.N. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ Sci. Pollut. Res. 2017; 24: 12700-12712. https://doi.org/10.1007/s11356-017-8904-x PMID: 28374202.
  51. Khayatnezhad, M. and Gholamin R. The effect of drought stress on leaf chlorophyll content and stress resistance in maize cultivars (Zea mays L.). Afr J Microbiol Res. 2012; 6(12): 2844-2848.
  52. Jat M.R., Mali A.L. Effect of phosphorus and seeding rate on physiological parameters and yield of chickpea. Indian. J. Agron. 1992; 37: 189-190.
  53. Majnoon Hosseini N., Mohammadi H., Poostini K., Zeinali-khanghah H. The effect of plant density on agricultural traits, chlorophyll amount, and stem remobilization percentage in white chickpea cultivars. Iran. Agric. Res. 2003; 34(4):1011-1019.
  54. Manivannan P., Abdul-Jaleel C., Sankar B., Kishorekumar A., Somasundaram R., Lakshmanan G.M.A., Panneerselvam R. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces. 2007; 59: 141-149.
  55. Barutcular, C., Yildirim M., Koc M., Akinci C., Toptas I., Albayrak O., Tanrikalu A., El-Sabagh A. Evaluation of spad chlorophyll in spring wheat genotypes under different environments. Fresenius Environ Bull. 2019; 25 (1): 1258-1266.
  56. Setaish-Mehr Z., Ganjali A. Investigating the effects of drought stress on the growth and physiological characteristics of dill plants (Anethum graveolens L.). J. Hortic. Sci. 2012; 27 (1): 27-35.
  57. Nurul-Azilla M., Wan-Zaliha W.S. Effects of different types and rates of biochar substrates on growth performances and yield of kaempferia parviflora wall. ex. baker grown on soilless culture system. Proc Int Conf FoSSA. Jember, August 1st -3rd; 168-175.
  58. Mirzai Haidari, M., Nouri, M.H., Khorgami, A., Pezeshakpour, P., Arzani, A. The effects of plant density and supplementary irrigation on agricultural traits, leaf chlorophyll content, and light penetration in the canopy of chickpea cultivars. Iranian. J. Plant Sci. 2008; 40 (3): 113-121.
  59. Vanek S.J., Lehmann J. Phosphorus availability to beans via interactions between mycorrhizas and biochar. Plant and Soil. 2015; 395: 105-123.
  60. Hassan F.A.S., Bazaid S., Ali E.F. Effect of deficit irrigation on growth, yield and volatile oil contenton Rosmarinus officinalis L. Plant. J. Med. Plants Stud. 2013; 1: 12-21.
  61. Hendry G., Evolutionary origins and natural functions of fructanc. New Phytol. 1993, 123, 3-14.
  62. Taize L., Zeiger E. Plant Physiology, 4th ed.; Sinauer Associates, Inc. Sunderland, MA, USA. 2006.
  63. Moitazedi S., Sayfzadeh S., Haghparast R., Zakerin H.R., Jabari H. Mitigation of drought stress effects on wheat yield via the foliar application of boron, zinc, and manganese nano-chelates and supplementary irrigation. J. Plant Nutr. 2023; 46 (9): 1988-2002. https://doi.org/10.1080/0 1904167.2022.2105719.
  64. Rahemi M., Karimi S.,  Sedaghat S., Rostami A.A. Physiological responses of olive cultivars to salinity stress. Adv Hortic Sci. 2017; 31(1): 53-59. https://doi.org/10.13128/ahs-20726.
  65. Lehmann J., Stephen J. Biochar for environmental management: Science, Technology and Implementation. Science and Technology. Routledge; 2015.
  66. Rogovska N., Laird D.A., Rathke S.J., Karlen D.L. Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma. 2014; 230: 34-347.
  67. Hashem H.A., El-Sherif N.A. Exogenous Jasmonic Acid Induces Lead Stress Tolerance in Kidney Bean (Phaseolus vulgaris L.) by Changing Amino Acid Profile and Stimulating Antioxidant Defense System. Jordan J Biol Sci. 2019; 12.
  68. Trupiano D., Cocozza C., Baronti S., Amendola C., Primo Vaccari F., Lustrato G., Di Lonardo S., Fantasma F., Tognetti R., Stefania Scippa G. The Effects of Biochar and Its Combination with Compost on Lettuce (Lactuca sativa L.) Growth, Soil Properties, and Soil Microbial Activity and Abundance. Int J Agron. https://doi.org/10.1155/2017/3158207.
  69. Gholinezhad H. Effect of drought stress and stress modifier on biochemical traits of pot marigold (Calendula officinalis L.). J Plant Proc and Func. 2019; 8(33): 212-228.
  70. Rezai-Chiane A. The effect of different irrigation treatments on the accumulation of essential oil, its compounds, and some ecophysiological traits in fennel (Foeniculum vulgare L.). PhD thesis, Tabriz University. 2013.
  71. Tátrai, Z.A., Sanoubar R., Pluhár Z., Mancarella S., Orsini F., Gianquinto G. Morphological and physiological plant responses to drought stress in Thymus citriodorus. Int J Agron. 2016; 8: 23-34.
  72. Alavi-Samani S.M., Ghasemi Pirbalouti A., Ataei Kachouei M., Hamedi B. The influence of reduced irrigation on herbage, essential oil yield and quality of Thymus vulgaris and Thymus daenensis. J Herb Drugs. 2013; 4: 109-113.