Exploring the Potent Antifungal Activity of Mazuj and Ghalghaf Gall Extracts Against Three Candida Species and Conducting Compositional and Characterization Analysis of their Extracts Using HPLC-DAD and LC-ESI-MS/MS

Document Type : Research Paper

Authors

1 Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran

2 Agricultural Research, Education and Extension Organization (AREEO), Lorestan Agricultural & Natural Resources Research Centre, Khorramabad, Iran

3 Department of Epidemiology & Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran

4 Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran

5 Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran

Abstract

The development of novel antifungal agents has become increasingly crucial according to the antifungal resistance of Candida species. Using natural product compounds as alternatives to conventional drugs is being explored to advance a more effective treatment for C. infections. This study aims to determine biological activity and the chemical compound characterization of the aqueous and acetonic extracts obtained from Mazuj and Ghalghaf galls of Quercus infectoria. After the galls extraction, the extracts' antifungal properties were investigated using an agar well diffusion method and concentrations of minimum fungicidal (MFCs) and minimum inhibitory (MICs). We utilized the ABTS and MTT methods to determine gall extracts' antioxidant and cytotoxic properties. Additionally, we identified the chemical compounds present in the extracts using LC-ESI-MS/MS and HPLC-DAD. The study results showed that both acetonic and aqueous extracts of Ghalghaf and Mazuj galls were efficient against species of three fungi species such as C. albicans, C. glabrata, and C. krusei, and in particular, the acetonic Mazuj extract demonstrated the highest effectiveness as an antifungal. Furthermore, the Mazuj extract exhibited elevated levels of total phenolics and the most increased antioxidant activity. Moreover, LC-ESI-MS/MS and HPLC-DAD analysis indicated the presence of various phenolic compounds in the extracts, including gallic acid, methyl gallate, and ellagic acid. Overall, the study's findings suggest that Mazuj and Ghalghaf galls demonstrate promising antifungal and antioxidant properties, where these compounds could potentially be used to develop natural and safe antifungal agents. 

Keywords

Main Subjects


  1. Lopes J.P., Lionakis M.S. Pathogenesis and virulence of Candida albicans. 2021;13(1):89-121.
  2. Bilal H., Hou B., Shafiq M., Chen X., Shahid M.A., Zeng Y. Antifungal susceptibility pattern of Candida isolated from cutaneous candidiasis patients in eastern Guangdong region: A retrospective study of the past 10 years. Front Microbiol. 2022; 13:3078.
  3. Czechowicz P., Nowicka J., Gościniak G. Virulence Factors of Candida spp. and Host Immune Response Important in the Pathogenesis of Vulvovaginal Candidiasis. Int. J. Mol. Sci. 2022;23(11).
  4. Nsenga L., Bongomin F. Recurrent Candida Vulvovaginitis. Venereology. 2022;1(1):114-23. https://doi:10.3390/venereology1010008.
  5. Mollazadeh-Narestan Z., Yavarikia P., Homayouni-Rad A., Samadi Kafil H., Mohammad-Alizadeh-Charandabi S., Gholizadeh P., et al. Probiotics and Antimicrobial Proteins Comparing the Effect of Probiotic and Fluconazole on Treatment and Recurrence of Vulvovaginal Candidiasis: a Triple-Blinded Randomized Controlled Trial. s. f.; 1:3.
  6. Tsega A., Mekonnen F. Prevalence, risk factors and antifungal susceptibility pattern of Candida species among pregnant women at Debre Markos Referral Hospital, Northwest Ethiopia. BMC Pregnancy and Childbirth. 2019;19(1):1-8.
  7. Ciurea CN., Kosovski I-B., Mare AD., Toma F., Anca Pintea-Simon I., Man A. microorganisms Candida and Candidiasis-Opportunism Versus Pathogenicity: A Review of the Virulence Traits. Microorganisms. 2020;8(6):857.
  8. Whaley S.G., Berkow E.L., Rybak J.M., Nishimoto A.T., Barker K.S., Rogers P.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida Species. Front Microbiol. 2017;7(JAN):2173.
  9. Pristov K.E., Ghannoum M.A. Resistance of Candida to azoles and echinocandins worldwide. Clinical Microbiology and Infection. 2019;25(7):792-8.
  10. Nishimoto A.T., Sharma C., Rogers P.D. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans. J. Antimicrobial Chem. 2020;75(2):257-70.
  11. Hossain C.M., Ryan L.K., Gera M., Choudhuri S., Lyle N., Ali KA., et al. Antifungals and Drug Resistance. Encyclopedia. 2022;2(4):1722-37.
  12. Zida A., Bamba S., Yacouba A., Ouedraogo-Traore R., Guiguemdé RT. Anti-Candida albicans natural products, sources of new antifungal drugs: A review. J. Mycol. Med. 2017;27(1):1-19. https://doi:
  13. Basavegowda N., Baek KH. Combination Strategies of Different Antimicrobials: An Efficient and Alternative Tool for Pathogen Inactivation. Biomedicines. 2022;10(9):2219.
  14. Shamim A., Ali A., Iqbal Z., Mirza M.A., Aqil M., Kawish S.M., et al. Natural Medicine a Promising Candidate in Combating Microbial Biofilm. Antibiotics. 2023;12(2):299.
  15. Taib M., Rezzak Y., Bouyazza L., Lyoussi B. Medicinal Uses, Phytochemistry, and Pharmacological Activities of Quercus Species. Evidence-based Complementary and Alternative Medicine. 2020;2020.
  16. Hearn J., Blaxter M., Schönrogge K., Nieves-Aldrey J.L., Pujade-Villar J., Huguet E., et al. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. PLoS Genet. 2019;15(11):e1008398.
  17. Wilson, Fernandes G., Carneiro M.A., MS IR. Gall-Inducing Insects: From Anatomy to Biodiversity. Insect Bioecology and Nutrition for Integrated Pest Management. 2012:387-414.
  18. Kariñho-Betancourt E., Hernández-Soto P., Rendón-Anaya M., Calderón-Cortés N., Oyama K. Differential expression of genes associated with phenolic compounds in galls of Quercus castanea induced by Amphibolips michoacaensis. J Plant Interact. 2019;14(1):177-86.
  19. Albuquerque B.R., Heleno S.A 8., Oliveira MBPP., Barros L., Ferreira ICFR. Phenolic compounds: current industrial applications, limitations, and future challenges. Food Funct. 2021;12(1):14-29.
  20. Mohammadi-Sichani M., Karbasizadeh V., Dokhaharani SC. Evaluation of biofilm removal activity of Quercus infectoria galls against Streptococcus mutans. Dent Res J (Isfahan). 2016;13(1):46-51.
  21. Tavakoli M., Khaghaninia S., Melika G., Stone G.N., Hosseini-Chegeni A. Molecular identification of Andricus species (Hymenoptera: Cynipidae) inducing various oak galls in Central Zagros of Iran. 2019;30(5):713-20.
  22. Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016:71-9.
  23. M60Ed2 | Performance Standards for Antifungal Susceptibility Testing of Yeasts, 2nd Edition. [accedido 12 marzo 2021]. Disponible en: https://clsi.org/standards/products/microbiology/documents/m60/.
  24. Bach F., Zielinski A.A.F., Helm C.V., Maciel GM., Pedro A.C., Stafussa AP., et al. Bio compounds of edible mushrooms: in vitro antioxidant and antimicrobial activities. LWT. 2019; 107:214-20.
  25. Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999; 299:152-78. https://doi:10.1016/S0076-6879(99)99017-1.
  26. Parra-Riofrío G., García-Márquez J., Casas-Arrojo V., Uribe-Tapia E., Abdala-Díaz R.T. Antioxidant and Cytotoxic Effects on Tumor Cells of Exopolysaccharides from Tetraselmis suecica (Kylin) Butcher Grown Under Autotrophic and Heterotrophic Conditions. Marine Drugs. 2020;18(11):534.
  27. Dokhaharani S.C., Ghobad-Nejhad M., Moghimi H., Farazmand A., Rahmani H. Biological activities of two polypore macrofungi (Basidiomycota) and characterization of their compounds using HPLC–DAD and LC–ESI–MS/MS. Folia Microbiol (Praha). 2021:1-12.
  28. Norouzi H., Azizi A., Gholami M., Sohrabi M., Boustie J. Chemotype variations among lichen ecotypes of Umbilicaria aprina as revealed by LC-ESI-MS/MS: a survey of antioxidant phenolics. Environ. Sci. Pollution Res. 2020;27(32):40296-308.
  29. Colombo F., Lorenzo C.Di., Regazzoni L., Fumagalli M., Sangiovanni E., Sousa LP de., et al. Phenolic profiles and anti-inflammatory activities of sixteen table grape (Vitis vinifera L.) varieties. Food Funct. 2019;10(4):1797-807.
  30. Cassone A. Vulvovaginal Candida albicans infections: pathogenesis, immunity and vaccine prospects. BJOG. 2015;122(6):785-94.
  31. Vanreppelen G., Wuyts J., Van Dijck P., Vandecruys P. Sources of Antifungal Drugs. J. Fungi. 2023;9(2):171.
  32. Donders G., Sziller I.O., Paavonen J., Hay P., de Seta F., Bohbot J.M., et al. Management of recurrent vulvovaginal candidosis: Narrative review of the literature and European expert panel opinion. Front. Cell Infect. Microbiol. 2022; 12:1257.
  33. Nouri F., Raoofi A., Dadfar S. Antifungal Activity of Lavandula Angustifolia and Quergues Infectoria Extracts in Comparison with Nystatin on Candida albicans. Avicenna J. Clinical Med. 2016;23(2):172-8.
  34. Tayel A.A., El-Tras W.F., Abdel-Monem O.A., El-Sabbagh SM., Alsohim AS., El-Refai EM. Production of anticandidal cotton textiles treated with oak gall extract. Rev. Argent. Microbiol. 2013;45(4):271-6.
  35. Rašeta M., Karaman M., Jakšić M., Šibul F., Kebert M., Novaković A., et al. Mineral composition, antioxidant and cytotoxic biopotentials of wild-growing Ganoderma species (Serbia): G. lucidum (Curtis) P. Karst vs. G. applanatum (Pers.) Pat. Int. J. Food Sci. Technol. 2016;51(12):2583-90.
  36. Lima V.N., Oliveira-Tintino C.D.M., Santos E.S., Morais L.P., Tintino S.R., Freitas T.S., et al. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microb Pathog. 2016; 99:56-61.
  37. Yang Z.N., Su B.J., Wang Y.Q., Liao H.B., Chen Z.F., Liang D. Isolation, Absolute Configuration, and Biological Activities of Chebulic Acid and Brevifolincarboxylic Acid Derivatives from Euphorbia hirta. J Nat Prod. 2020;83(4):985-95.
  38. Zang J., Ma S., Wang C., Guo G., Zhou L., Tian X., et al. Screening for active constituents in Turkish galls against ulcerative colitis by mass spectrometry guided preparative chromatography strategy: in silico, in vitro and in vivo study. Food Funct. 2018;9(10):5124-38.
  39. Ismail I., Kasiraja V., Abdullah H. A review on anticancer potential of Quercus infectoria and its bioactive compounds. Biomedicine (Taipei). 2021;41(4):701-5.
  40. Chung K.T., Wong T.Y., Wei C.I., Huang Y.W., Lin Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 1998;38(6):421-64.
  41. Gao J., Yang X., Yin W., Li M. Gallnuts: A Potential Treasure in Anticancer Drug Discovery. Evidence-based Complementary and Alternative Medicine. 2018.
  42. BenSaad L.A., Kim KH., Quah C.C., Kim W.R., Shahimi M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement Altern. Med. 2017;17(1):1-10.
  43. Gao J., Yang X., Yin W., Li M. Gallnuts: A Potential Treasure in Anticancer Drug Discovery. Evidence-based Complementary and Alternative Medicine. 2018;2018.
  44. Hamad H.O., Alma M.H., Gulcin İ., Yılmaz M.A., Karaoğul E. Evaluation of phenolic contents and bioactivity of root and nutgall extracts from iraqian Quercus infectoria olivier. Records of Natural Products. 2017;11(2):205-10.
  45. Abdullah A.R., Hapidin H., Abdullah H. The Role of Semipurified Fractions Isolated from Quercus infectoria on Bone Metabolism by Using hFOB 1.19 Human Fetal Osteoblast Cell Model. Evidence-based Complementary and Alternative Medicine. 2018.
  46. Abdullah A.R., Hapidin H., Abdullah H. Phytochemical analysis of Quercus infectoria galls extracts using FTIR, LC-MS and MS/MS analysis. Res. J. Biotechnol. 2017;12(12):55-61.
  47. Da Silva V.C., Napolitano A., Eletto D., Rodrigues C.M., Pizza C., Vilegas W. Characterization of gallotannins from Astronium species by flow injection analysis-electrospray ionization-ion trap-tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. European J. Mass. Spectrometry. 2011;17(4):365-75.
  48. Degano I., Mattonai M., Sabatini F., Colombini M.P. A mass spectrometric study on tannin degradation within dyed woolen yarns. Molecules. 2019;24(12).
  49. Grace M.H., Warlick C.W., Neff S.A., Lila M.A. Efficient preparative isolation and identification of walnut bioactive components using high-speed counter-current chromatography and LC-ESI-IT-TOF-MS. Food Chem. 2014;158:229-38.
  50. Tan H.P., Ling S.K., Chuah CH. Characterisation of galloylated cyanogenic glucosides and hydrolysable tannins from leaves of Phyllagathis rotundifolia by LC-ESI-MS/MS. Phytochemical Analysis. 2011;22(6):516-25. https://doi: 10.1002/pca.1312.
  51. Lu M., Yan L., Wang B., Tian S. Effect of vibrating-type ultrafine grinding on the physicochemical and antioxidant properties of Turkish galls in Uyghur medicine. Powder Technol. 2018; 339:560-8.
  52. Wyrepkowski C.C., Da Costa D.L.M.G., Sinhorin A.P., Vilegas W., De Grandis R.A., Resende F.A., et al. Characterization and quantification of the compounds of the ethanolic extract from caesalpinia ferrea stem bark and evaluation of their mutagenic activity. Molecules. 2014;19(10):16039-57.
  53. Chen H fang., Zhang C., Yao Y., Li J mao., Du W di., Li M lan., et al. Study on anti-hyperuricemia effects and active ingredients of traditional Tibetan medicine TongFengTangSan (TFTS) by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 2019; 165:213-23.
  54. Kumar S., Singh A., Kumar B. Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. J. Pharm. Anal. 2017;7(4):214-22.
  55. Yisimayili Z., Abdulla R., Tian Q., Wang Y., Chen M., Sun Z., et al. A comprehensive study of pomegranate flowers polyphenols and metabolites in rat biological samples by high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J. Chromatogr A. 2019;1604.
  56. Muccilli V., Cardullo N., Spatafora C., Cunsolo V., Tringali C. α-Glucosidase inhibition and antioxidant activity of an oenological commercial tannin. Extraction, fractionation and analysis by HPLC/ESI-MS/MS and 1H NMR. Food Chem. 2017; 215:50-60.
  57. Zang J., Ma S., Wang C., Guo G., Zhou L., Tian X., et al. Screening for active constituents in Turkish galls against ulcerative colitis by mass spectrometry guided preparative chromatography strategy: in silico, in vitro and in vivo study. Food Funct. 2018;9(10):5124-38.
  58. Da Silva V.C., Napolitano A., Eletto D., Rodrigues C.M., Pizza C., Vilegas W. Characterization of gallotannins from Astronium species by flow injection analysis-electrospray ionization-ion trap-tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. European J. Mass Spectrometry. 2011;17(4):365-75. https://doi:10.1255/ejms.1141.
  59. Lu M., Yan L., Wang B., Tian S. Effect of vibrating-type ultrafine grinding on the physicochemical and antioxidant properties of Turkish galls in Uyghur medicine. Powder Technol. 2018; 339:560-8.
  60. Hamad H.O., Alma M.H., Gulcin İ., Yılmaz M.A., Karaoğul E. Evaluation of phenolic contents and bioactivity of root and nutgall extracts from iraqian Quercus infectoria olivier. Records of Natural Prod. 2017;11(2):205-10.
  61. Chen H fang., Zhang C., Yao Y., Li J mao., Du W di., Li M lan., et al. Study on anti-hyperuricemia effects and active ingredients of traditional Tibetan medicine TongFengTangSan (TFTS) by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 2019; 165:213-23.
  62. Kumar S., Singh A., Kumar B. Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. J. Pharm. Anal. 2017;7(4):214-22.
  63. Zhang Y.G., Kan H., Chen S.X., Thakur K., Wang S., Zhang J.G., et al. Comparison of phenolic compounds extracted from Diaphragma juglandis fructus, walnut pellicle, and flowers of Juglans regia using methanol, ultrasonic wave, and enzyme assisted-extraction. Food Chem. 2020;321.
  64. Yisimayili Z., Abdulla R., Tian Q., Wang Y., Chen M., Sun Z., et al. A comprehensive study of pomegranate flowers polyphenols and metabolites in rat biological samples by high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J. Chromatogr A. 2019;1604.
  65. Abdullah A.R., Hapidin H., Abdullah H. The Role of Semipurified Fractions Isolated from Quercus infectoria on Bone Metabolism by Using hFOB 1.19 Human Fetal Osteoblast Cell Model. Evidence-based Complementary and Alternative Medicine. 2018;2018.
  66. Degano I., Mattonai M., Sabatini F., Colombini M.P. A mass spectrometric study on tannin degradation within dyed woolen yarns. Molecules. 2019;24(12).
  67. Grace M.H., Warlick C.W., Neff S.A., Lila M.A. Efficient preparative isolation and identification of walnut bioactive components using high-speed counter-current chromatography and LC-ESI-IT-TOF-MS. Food Chem. 2014;158:229-38.
  68. Wyrepkowski C.C., Da Costa D.L.M.G., Sinhorin A.P., Vilegas W., De Grandis R.A., Resende F.A., et al. Characterization and quantification of the compounds of the ethanolic extract from caesalpinia ferrea stem bark and evaluation of their mutagenic activity. Molecules. 2014;19(10):16039-57.
  69. Zhang Y.G., Kan H., Chen S.X., Thakur K., Wang S., Zhang J.G., et al. Comparison of phenolic compounds extracted from Diaphragma juglandis fructus, walnut pellicle, and flowers of Juglans regia using methanol, ultrasonic wave, and enzyme assisted-extraction. Food Chem. 2020; 321.
  70. García-Villalba R., Espín J.C., Tomás-Barberán F.A., Rocha-Guzmán N.E. Comprehensive characterization by LC-DAD-MS/MS of the phenolic composition of seven Quercus leaf teas. J. Food Composition and Analysis. 2017; 63:38-46. https://doi:10.1016/j.jfca.2017.07.034.
  71. Muccilli V., Cardullo N., Spatafora C., Cunsolo V., Tringali C. α-Glucosidase inhibition and antioxidant activity of an oenological commercial tannin. Extraction, fractionation and analysis by HPLC/ESI-MS/MS and 1H NMR. Food Chem. 2017; 215:50-60.
  72. Abdullah A.R., Hapidin H., Abdullah H. Phytochemical analysis of Quercus infectoria galls extracts using FTIR, LC-MS and MS/MS analysis. Res. J. Biotechnol. 2017;12(12):55-61.
  73. Tan H.P., Ling S.K., Chuah CH. Characterisation of galloylated cyanogenic glucosides and hydrolysable tannins from leaves of Phyllagathis rotundifolia by LC-ESI-MS/MS. Phytochemical Analysis. 2011;22(6):516-25.
  74. Han J., Wanrooij J., van Bommel M., Quye A. Characterisation of chemical components for identifying historical Chinese textile dyes by ultra-high performance liquid chromatography – photodiode array – electrospray ionisation mass spectrometer. J Chromatogr A. 2017; 1479:87-96. https://doi:10.1016/j.chroma.2016.11.044.
  75. Clifford M.N., Stoupi S., Kuhnert N. Profiling and characterization by LC-MSn of the galloylquinic acids of green tea, tara tannin, and tannic acid. J Agric Food Chem. 2007;55(8):2797-807.
  76. Hsu F.L., Huang W.J., Wu TH., Lee M.H., Chen L.C., Lu H.J., et al. Evaluation of antioxidant and free radical scavenging capacities of polyphenolics from pods of caesalpinia pulcherrima. Int. J. Mol. Sci. 2012;13(5):6073-88. https://doi:10.3390/ijms13056073.
  77. Li CW., Dong HJ., Cui C Bin. The synthesis and antitumor activity of twelve galloyl glucosides. Molecules. 2015;20(2):2034-60.
  78. Lin WH., Deng Z.W., Lei H.M., Fu H.Z., Li J. Polyphenolic compounds from the leaves of Koelreuteria paniculata Laxm. J. Asian Nat. Prod. Res. 2002;4(4):287-95.
  79. Han J., Wanrooij J., van Bommel M., Quye A. Characterisation of chemical components for identifying historical Chinese textile dyes by ultra high-performance liquid chromatography – photodiode array – electrospray ionization mass spectrometer. J Chromatogr A. 2017; 1479:87-96. https://doi: 10.1016/j.chroma.2016.11.044.
  80. García-Villalba R., Espín J.C., Tomás-Barberán FA., Rocha-Guzmán NE. Comprehensive characterization by LC-DAD-MS/MS of the phenolic composition of seven Quercus leaf teas. J. Food Composition and Analysis. 2017; 63:38-46. https://doi:10.1016/j.jfca.2017.07.034.
  81. Cadahía E., De Simón B.F., Aranda I., Sanz M., Sánchez-Gómez D., Pinto E. Non-targeted metabolomic profile of Fagus Sylvatica l. leaves using liquid chromatography with mass spectrometry and gas chromatography with mass spectrometry. Phytochemical Analysis. 2015;26(2):171-82.
  82. Moctezuma C., Hammerbacher A., Heil M., Gershenzon J., Méndez-Alonzo R., Oyama K. Specific Polyphenols and Tannins are Associated with Defense Against Insect Herbivores in the Tropical Oak Quercus oleoides. J. Chem. Ecol. 2014;40(5):458-67.
  83. Zhang Y.J., Abe T., Tanaka T., Yang C.R., Kouno I. Phyllanemblinins A-F, new ellagitannins from Phyllanthus emblica. J. Nat. Prod. 2001;64(12):1527-32.