Phytochemical Investigation of the Aerial Parts of Salvia rhytidea Benth

Document Type : Research Paper

Authors

1 Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran

2 Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria

Abstract

The genus Salvia is a rich source of structurally diverse terpenoids. Salvia rhytidea Benth. from the Lamiaceae family is one of the endemic species in the southeast of Iran. Significant biological activities such as anti-inflammatory, cytotoxic, antioxidant, antibacterial, and antifungal effects have been previously reported for the plant. There has been no phytochemical study on the aerial parts of S. rhytidea, with the exception of an analysis of the essential oil. The aim of this study was to carry out a comprehensive phytochemical investigation on aerial parts of S. rhytidea. The ethyl acetate (EtOAc) extract of the aerial parts of the plant was separated by different chromatographic methods on the silica gel and Sephadex LH-20 columns, and preparative thin layer chromatography (Prep TLC) to afford eleven (1-11) metabolites. The structure elucidation of the compounds was performed by extensive 1D and 2D-NMR spectroscopy and comparing their spectra with those reported in the literature. The process resulted in the isolation and purification of four flavonoids, salvigenin (1), eupatorin (2), cirsiliol (3), and cirsimaritin (4), three pentacyclic triterpenes, α-amyrin (5), lupeol (6), and ursolic acids (8), two labdane diterpenoids, sclareol (9) and 6β-hydroxysclareol (10), and two steroidal compounds, β-sitosterol (7) and daucosterol (11). All of these metabolites are described here for S. rhytidea for the first time. In previous studies, several biological properties have been reported for these compounds. Hereupon, S. rhytidea has good potential to conduct further studies in the pharmaceutical and cosmetic fields.

Keywords

Main Subjects


  1. REFERENCES
  2. Adedeji A.A., Babalola O.O. Secondary metabolites as plant defensive strategy: a large role for small molecules in the near root region. Planta 2020; 252: 61.
  3. Olanrewaju O.S., Ayangbenro A.S., Babalola O.O., Glick B.R. Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol. 2019; 103: 1155-1166.
  4. Ramírez R.D., Passari A.K., Ruiz V.B., Rodríguez S.R., Sánchez S., Demain A.L. Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol. 2022; 106: 1855-1878.
  5. Walker J.B., Sytsma K.J., Treutlein J., Wink M. Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am J Bot. 2004; 91: 1115-1125.
  6. Askari S.F., Avan R., Tayarani Z., Sahebkar A., Eghbali S. Iranian Salvia species: a phytochemical and pharmacological update. Phytochemistry 2021; 183: 112619.
  7. Bahadori M.B., Valizadeh H., Asghari B., Dinparast L., Farimani M.M., Bahadori Sh. Chemical composition and antimicrobial, cytotoxicity, antioxidant and enzyme inhibitory activities of Salvia spinosa L. J. Funct. Foods 2015; 18: 727-736.
  8. Zargari A. Medicinal plants. University of Tehran Pub., Tehran, Iran. 1990; 4.
  9. Farimani M.M., Mazarei Z. Sesterterpenoids and other constituents from Salvia lachnocalyx Hedge. Fitoterapia 2014; 98: 234-240.
  10. Kahraman A., Celep F., Dogan M. Anatomy, trichome morphology and palynology of Salvia chrysophylla Stapf (Lamiaceae). S. Afr. J. Bot. 2010; 76: 187-195.
  11. Farimani M.M., Bahadori M.B., Koulaei S.A., Salehi P., Ebrahimi S.N., Khavasi H.R., Hamburger M. New ursane triterpenoids from Salvia urmiensis Bunge: absolute configuration and anti-proliferative activity. Fitoterapia 2015; 106: 1-6.
  12. Farimani M.M., Khodaei B., Moradi H., Aliabadi A., Ebrahimi S.N., De Mieri M., Kaiser M., Hamburger M. Phytochemical study of Salvia leriifolia roots: rearranged abietane diterpenoids with antiprotozoal activity. J. Nat. Prod. 2018; 81: 1384-1390.
  13. Farimani M.M., Miran M. Labdane diterpenoids from Salvia reuterana. Phytochemistry. 2014; 108: 264-269.
  14. Wu Y.B., Ni Zh.Y., Shi Q.W., Dong M., Kiyota H., Gu Y.Ch., Cong B. Constituents from Salvia species and their biological activities. Chemical Reviews 2012; 112: 5967-6026.
  15. Farimani M.M., Taleghani A., Aliabadi A., Aliahmadi A., Esmaeili M.A., Sarvestani N.N., Khavasi H.R., Smieško M., Hamburger M., Ebrahimi S.N. Labdane diterpenoids from Salvia leriifolia: Absolute configuration, antimicrobial and cytotoxic activities. Planta Med. 2016; 1279-1285.
  16. Tabefam M., Farimani M.M., Danton O., Ramseyer J., Nejad Ebrahimi S., Neuburger M., Kaiser M., Salehi P., Potterat O., Hamburger M. Antiprotozoal isoprenoids from Salvia hydrangea. J. Nat. Prod. 2018; 81: 2682-2691.
  17. Jassbi A.R., Eghtesadi F., Hazeri N., Ma’sumi H., Valizadeh J., Chandran J.N., Schneider B., Baldwin I.T. The roots of Salvia rhytidea: a rich source of biologically active diterpenoids. Nat. Prod. Res. 2017; 31: 477-481.
  18. Fooladi S., Ansari M., Sharififar F., Pournourmohammadi S., Rad B.L., Mohamadi N. Effect of Salvia rhytidea Benth. extract on serum glucose, gut alphaglucosidase in healthy and streptozotocin-induced diabetic rats. J. Ayurvedic Herb. Med. 2016; 2: 40-42.
  19. Salari S., Bakhshi T., Sharififar F., Naseri A., Almani P.G. Evaluation of antifungal activity of standardized extract of Salvia rhytidea Benth.(Lamiaceae) against various Candida isolates. J Mycol Med. 2016; 26: 323-330.
  20. Eghtesadi F., Farimani M.M., Hazeri N., Valizadeh J. Abietane and nor-abitane diterpenoids from the roots of Salvia rhytidea. Springer Plus. 2016; 5: 1-6.
  21. Rustaiyan A.H., Akhgar M.R., Masoudi S., Nematollahi F. Chemical composition of essential oils of three Salvia species growing wild in Iran: Salvia rhytidea Benth, S. limbata CA Mey. and S. palaestina Benth. J. Essent. Oil Res. 2005; 17: 522-524.
  22. Habibi Z., Yousefi M., Aghaie H.R., Salehi P., Masoudi S., Rustaiyan A.H. Chemical composition of essential oil of Salvia persepolitana Boiss. and Salvia rhytidea Benth. from Iran. J. Essent. Oil Res. 2008; 20: 1-3.
  23. Soroury S., Alilou M., Gelbrich T., Tabefam M., Danton O., Ebrahimi S.N., Kaiser M., Hamburger M., Stuppner H., Farimani M.M. Unusual derivatives from Hypericum scabrum. Sci. Rep. 2020; 10: 22181.
  24. Zahabi Z.F., Sharififar F., Almani P.G., Salari S. Antifungal activities of different fractions of Salvia rhytidea Benth as a valuable medicinal plant against different Candida species in Kerman province (Southeast of Iran). Gene Rep. 2020; 19: 100624.
  25. Ansari M., Sharififar F., Arabzadeh A.M., Mehni F., Mirtadzadini M., Iranmanesh Z., Nikpour N. In vitro evaluation of anti-herpes simplex-1 activity of three standardized medicinal plants from Lamiaceae. Anc. Sci. Life. 2014; 34: 33.
  26. Ulubelen A., Öztürk S., Iśildatici S. A new flavone from Salvia triloba Lf (Labiatae). J Pharm Sci. 1968; 57: 1037-1038.
  27. González-Cortazar M., Salinas-Sánchez D.O., Herrera-Ruiz M., Román-Ramos D.C., Zamilpa A., Jiménez-Ferrer E., Ble-González E.A., Álvarez-Fitz P., Castrejón-Salgado R., Pérez-García M.D. Eupatorin and Salviandulin-A, with Antimicrobial and Anti-Inflammatory Effects from Salvia lavanduloides Kunth Leaves. Plants. 2022; 11: 1739.
  28. Marder M., Viola H., Wasowski C., Wolfman C., Waterman PG., Medina JH., Paladini AC. Cirsiliol and caffeic acid ethyl ester, isolated from S. guaranitica, are competitive ligands for the central benzodiazepine receptors. Phytomedicine 1996; 3: 29-31.
  29. Hawas U.W., El-Desoky S.K., Kawashty S.A., Sharaf M. Two new flavonoids from Origanum vulgare. Nat. Prod. Res. 2008; 22: 1540-1543.
  30. Okoye N.N., Ajaghaku D.L., Okeke H.N., Ilodigwe E.E., Nworu C.S., Okoye F.B.C. beta-Amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharm. Biol. 2014;52: 1478-1486.
  31. Magalhães C.G., Ferrari F.C., Guimarâes D.A., Silva G.D., Duarte L.P., Figueiredo R.C. Maytenus salicifolia Reissek, Celastraceae: triterpenes isolated from stems and antioxidant property of extracts from aerial parts. Rev Bras Farmacogn. 2011;21:415-419.
  32. Bin Sayeed M.S., Rezaul Karim S.M., Sharmin T., Morshed M.M. Critical analysis on characterization, systemic effect, and therapeutic potential of beta-sitosterol: a plant-derived orphan phytosterol. Med. 2016; 3: 29.
  33. Seebacher W., Simic N., Weis R., Saf R., Kunert O. Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18α‐oleanolic acid, ursolic acid and their 11‐oxo derivatives. Magn Reson Chem. 2003;41:636-638.
  34. Ncube E.N., Steenkamp P.A., van der Westhuyzen C.W., Steenkamp L.H., Dubery I.A. Metabolomics-guided analysis of the biocatalytic conversion of sclareol to ambradiol by Hyphozyma roseoniger. Catalysts 2022; 12: 55.
  35. Abdollahnezhad H., Bahadori M.B., Pourjafar H., Movahhedin N. Purification, characterization, and antioxidant activity of daucosterol and stigmasterol from Prangos ferulacea. Lett. Appl. Biosci. 2021; 10: 2174-2180.
  36. Raffa D., Maggio B., Raimondi M.V., Plescia F., Daidone G. Recent discoveries of anticancer flavonoids. Eur. J. Med. Chem. 2017; 142: 213-228.
  37. Mansourizadeh F., Sepehri H., Khoee S., Farimani M.M., Delphi L., Tousi M.Sh. Designing Salvigenin–loaded mPEG-b-PLGA@ Fe3O4 nanoparticles system for improvement of Salvigenin anti-cancer effects on the breast cancer cells, an in vitro study. J Drug Deliv Sci. Technol. 2020; 57: 101619.
  38. Sarvestani N.N., Sepehri H., Delphi L., Farimani M.M. Eupatorin and salvigenin potentiate doxorubicin-induced apoptosis and cell cycle arrest in HT-29 and SW948 human colon cancer cells. Asian Pac. J. Cancer Prev. 2018; 19: 131.
  39. Tousi M.Sh., Sepehri H., Khoee S., Farimani M.M., Delphi L., Mansourizadeh F. Evaluation of apoptotic effects of mPEG-b-PLGA coated iron oxide nanoparticles as a eupatorin carrier on DU-145 and LNCaP human prostate cancer cell lines. J. Pharm. Anal. 2021; 11: 108-121.
  40. Abdelhalim A., Karim N., Chebib M., Aburjai T., Khan I., Johnston G.AR., Hanrahan J. Antidepressant, anxiolytic and antinociceptive activities of constituents from Rosmarinus officinalis. J. Pharm. Pharm. Sci. 2015; 18: 448-459.
  41. Hu Zh., Liu X., Tian M., Ma Y., Jin B., Gao W., Cui G., Guo J., Huang L. Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants. Med. Res. Rev. 2021; 41: 2971-2997.
  42. Choudhary M.I., Siddiqui Z.A., Hussain S. Structure elucidation and antibacterial activity of new fungal metabolites of sclareol. Chem. Biodivers. 2006; 3: 54-61.
  43. Muffler K., Leipold D., Scheller M.Ch., Haas Ch., Steingroewer J., Bley Th., Neuhaus H.E., Mirata M.A., Schrader J., Ulber R. Biotransformation of triterpenes. Process Biochem. 2011; 46: 1-15.
  44. Siddique H.R., Saleem M. Beneficial health effects of lupeol triterpene: a review of preclinical studies. Life Sci. 2011; 88: 285-293.
  45. Singh D., Arya P., Sharma A., Dobhal M., Gupta R. Modulatory potential of α-amyrin against hepatic oxidative stress through antioxidant status in wistar albino rats. J. Ethnopharmacol. 2015; 161: 186-193.
  46. Moghaddam F.M., Farimani M.M., Salahvarzi S., Amin Gh. Chemical constituents of dichloromethane extract of cultivated Satureja khuzistanica. Evid. Based Complementary Altern. Med. 2007; 4: 95-98.
  47. Bradford P.G., Awad A.B. Phytosterols as anticancer compounds. Mol Nutr Food Res. 2007; 51: 161-170.
  48. Esmaeili M.A., Farimani M.M. Inactivation of PI3K/Akt pathway and upregulation of PTEN gene are involved in daucosterol, isolated from Salvia sahendica, induced apoptosis in human breast adenocarcinoma cells. S. Afr. J. Bot. 2014; 93: 37-47.