A Critical Review on Nutrients Requirements, Morphology, Environmental Factors and Applications of Chlorella vulgaris and Chlorella zofingiensis

Document Type : Research Paper

Authors

Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran

Abstract

Understanding the importance of microalgae in the health of humanity accelerate the progress in microalgae production through investigation and industrial production as an alternative for chemical and unhealthy productions. In this regard, green microalgae, Chlorella vulgaris and Chlorella zofingiensis have extensive applications representing their importance. Both chlorellae can be cultured in indoor environments and outdoors by remarkable adaption to the new altered condition. However, the growth rate is fast in three culture modes, including phototrophic, heterotrophic and mixotrophic. These robust biotechnological traits attract them more for researchers and engineers. There are some models and plans to increase the efficiency of products that, economically and technologically, must be feasible and plausible. In this study, we discussed investigations on scaling up the plants and their challenges. To cultivate and raise the growth rate of microalgae, knowledge of the nutrient requirements, the procedure of growth, and restrictions are necessary. Therefore, this study focused on comprehensive review about two widely-used and industrial applicable microalgae including C. vulgaris and C. zofingiensis. The differences and similarities in morphology, growth factors were assessed to help decision-makers and researches in this field.

Keywords

Main Subjects


  1. Silva J., Alves C., Pinteus S., Reboleira J., Pedrosa R., Bernardino S. Chlorella, in Nonvitamin and nonmineral nutritional supplements. 2019; Elsevier, 187-193.
  2. Safi C., Zebib B., Merah O., Pontalier P-Y., Vaca-Garcia C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews. 2014; 35: 265-278.
  3. Patel A.K., Choi Y.Y., Sim S.J. Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresource Tech. 2020; 300: 122741.
  4. Kosourov S., Seibert M., Ghirardi M.L. Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant and Cell Physiology. 2003; 44(2): 146-155.
  5. Panahi Y., Khosroushahi A.Y., Sahebkar A., Heidari H.R. Impact of Cultivation Condition and Media Content on Chlorella vulgaris Composition. Advanced Pharmaceutical Bulletin. 2019; 9(2): 182.
  6. Azizi S., Bayat B., Tayebati H., Hashemi A., Pajoum Shariati F. Nitrate and phosphate removal from treated wastewater by Chlorella vulgaris under various light regimes within membrane flat plate photobioreactor. Environmental Progress & Sustainable Energy. 2021; 40(2): e13519.
  7. Liu J., Batch Cultivation for Astaxanthin Analysis Using the Green Microalga Chlorella zofingiensis Under Multitrophic Growth Conditions, in Microbial Carotenoids. 2018; Springer. 97-106.
  8. Zhang Z., Sun D., Cheng K-W., Chen F. Inhibition of autophagy modulates astaxanthin and total fatty acid biosynthesis in Chlorella zofingiensis under nitrogen starvation. Bioresource Tech. 2018; 247: 610-615.
  9. Liu J. Chen F. Biology and industrial applications of Chlorella: advances and prospects. Microalgae Biotech. 2014; 1-35.
  10. Phukan M.M., Chutia R.S., Konwar B., Kataki R. Microalgae Chlorella as a potential bio-energy feedstock. Applied Energy. 2011; 88(10): 3307-3312.
  11. Azaman S.N.A. Morphological, biochemical and transcriptomic characterisation of Chlorella sorokiniana and Chlorella zofingiensis during normal and stress conditions. Uni. Sheffield. 2016.
  12. Iwamoto H. Industrial production of microalgal cell-mass and secondary products-major industrial species. Handbook of microalgal culture: Biotech. and Applied Phycology. 2004; 255: 263.
  13. Yamamoto M., Fujishita M., Hirata A., Kawano S. Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). J. Plant Res. 2004; 117(4): 257-264.
  14. Liu J., Sun Z., Gerken H., Liu Z., Jiang Y., Chen F. Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: biology and industrial potential. Marine drugs. 2014; 12(6): 3487-3515.
  15. Maruyama I., Nakao T., Shigeno I., Ando Y., Hirayama K. Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus, in Live Food in Aquaculture. Springer. 1997; 133-138.
  16. Yamamoto M., Kurihara I., Kawano S. Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae). Planta. 2005; 221(6): 766-775.
  17. Takeda H. Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae) 1. J. Phycology. 1991; 27(2): 224-232.
  18. Yuan Q., Li H., Wei Z., Lv K., Gao C., Liu Y., Zhao L. Isolation, structures and biological activities of polysaccharides from Chlorella: A review. Int J. Biological Macromolecules. 2020.
  19. Atkinson j.A., Gunning B., John P. Sporopollenin in the cell wall of Chlorella and other algae: ultrastructure, chemistry, and incorporation of 14 C-acetate, studied in synchronous cultures. Planta. 1972; 107(1): 1-32.
  20. Yamada T. Sakaguchi K. Comparative studies on Chlorella cell walls: induction of protoplast formation. Archives of Microbio. 1982; 132(1): 10-13.
  21. Pignolet O., Jubeau S., Vaca-Garcia C., Michaud P. Highly valuable microalgae: biochemical and topological aspects. J. Industrial Microbio. Biotech. 2013; 40(8): 781-796.
  22. Dashek W.V. Harrison M. Plant cell biology. Series TitlDashek, W.V. and M. Harrison. Plant cell biology of Message. Plant Cell Biology of List [Content Type] 2006 Post Cited]. Sci Publishers..e. 2006.
  23. Carlson B.M. Chapter 1 - Cells, in The Human Body, B.M. Carlson, Editor. 2019; Academic Press, 1-25.
  24. Queiroz M.I., Vieira J.G., Maroneze M.M. Morphophysiological, structural, and metabolic aspects of microalgae, in Handbook of Microalgae-Based Processes and Products. 2020; Elsevier, 25-48.
  25. Huss V.A., Frank C., Hartmann E.C., Hirmer M., Kloboucek A., Seidel B.M., Wenzeler P., Kessler E. Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J. Phycology. 1999; 35(3): 587-598.
  26. Popova A., Comparative characteristic of mitochondria ultrastructural organization in Chlorella cells under altered gravity conditions. Advances in Space Research. 2003; 31(10): 2253-2259.
  27. Li T., Xu J., Gao B., Xiang W., Li A., Zhang C. Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies. Algal Res. 2016; 16: 481-491.
  28. Costa J.A.V., de Morais M.G. An open pond system for microalgal cultivation, in Biofuels from algae. Elsevier. 2014; 1-22.
  29. Imaizumi Y., Nagao N., Yusoff F.M., Kurosawa N., Kawasaki N., Toda T. Lumostatic operation controlled by the optimum light intensity per dry weight for the effective production of Chlorella zofingiensis in the high cell density continuous culture. Algal Res. 2016; 20: 110-117.
  30. Morales M., Sánchez L., Revah S. The impact of environmental factors on carbon dioxide fixation by microalgae. FEMS Microbiology Letters. 2018; 365(3): fnx262.
  31. Sydney E.d., Da Silva T., Tokarski A., Novak A.d., De Carvalho J., Woiciecohwski A., Larroche C., Soccol C. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy. 2011; 88(10): 3291-3294.
  32. Orosa M., Valero J., Herrero C., Abalde J. Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotech Letters. 2001; 23(13): 1079-1085.
  33. Zhang X. Microalgae removal of CO2 from flue gas. IEA Clean Coal Centre, UK. 2015.
  34. Metsoviti M.N., Papapolymerou G., Karapanagiotidis I.T., Katsoulas N. Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris. Plants. 2020; 9(1): 31.
  35. Koch M., Kniggendorf A.K., Meinhardt‐Wollweber M., Roth B. In vivo determination of carotenoid resonance excitation profiles of Chlorella vulgaris, Haematococcus pluvialis, and Porphyridium purpureum. J. Raman Spectroscopy. 2018; 49(3): 404-411.
  36. Oncel S.S., Imamoglu E., Gunerken E., Sukan F.V. Comparison of different cultivation modes and light intensities using mono‐cultures and co‐cultures of Haematococcus pluvialis and Chlorella zofingiensis. J. Chem. Tech. Biotech. 2011; 86(3): 414-420.
  37. Imaizumi Y., Nagao N., Yusoff F.M., Taguchi S., Toda T. Estimation of optimum specific light intensity per cell on a high-cell-density continuous culture of Chlorella zofingiensis not limited by nutrients or CO2. Bioresource Tech. 2014; 162: 53-59.
  38. Li Y., Huang J., Sandmann G., Chen F. high‐light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in Chlorella zofingiensis (chlorophyceae) 1. J. Phycology. 2009; 45(3): 635-641.
  39. Zhao Y., Wang J., Zhang H., Yan C., Zhang Y. Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process. Bioresource Tech. 2013; 136: 461-468.
  40. del Pilar Sánchez-Saavedra M., Sauceda-Carvajal D., Castro-Ochoa F.Y., Molina-Cárdenas C.A. The use of light spectra to improve the growth and lipid content of Chlorella vulgaris for biofuels production. BioEnergy Research. 2020; 13(2): 487-498.
  41. Serra-Maia R., Bernard O., Gonçalves A., Bensalem S., Lopes F. Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobioreactor. Algal Res. 2016; 18: 352-359.
  42. Gong M. Bassi A. Investigation of Chlorella vulgaris UTEX 265 cultivation under light and low temperature stressed conditions for lutein production in flasks and the coiled tree photo-bioreactor (CTPBR). Applied biochemistry and biotechnology. 2017; 183(2): 652-671.
  43. Feng P., Deng Z., Fan L., Hu Z. Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. J. Bioscience and Bioengineering. 2012; 114(4): 405-410.
  44. Bechet Q., Shilton A., Fringer O.B., Munoz R., Guieysse B. Mechanistic modeling of broth temperature in outdoor photobioreactors. Environmental Sci. Tech. 2010; 44(6): 2197-2203.
  45. Zhu L., Wang Z., Takala J., Hiltunen E., Qin L., Xu Z., Qin X., Yuan Z. Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresource Tech. 2013; 137: 318-325.
  46. Zhang Z., Gao P., Guo L., Wang Y., She Z., Gao M., Zhao Y., Jin C., Wang G. Elucidating temperature on mixotrophic cultivation of a Chlorella vulgaris strain: Different carbon source application and enzyme activity revelation. Bioresource Tech. 2020; 314: 123721.
  47. Manhaeghe D., Michels S., Rousseau D.P., Van Hulle S.W. A semi-mechanistic model describing the influence of light and temperature on the respiration and photosynthetic growth of Chlorella vulgaris. Bioresource Tech. 2019; 274: 361-370.
  48. Huo S., Wang Z., Zhu S. , Shu Q., Zhu L., Qin L., Zhou W., Feng P., Zhu F., Yuan Z. Biomass accumulation of Chlorella zofingiensis G1 cultures grown outdoors in photobioreactors. Frontiers in Energy Res. 2018; 6: 49.
  49. Nakamura Y. Miyachi S. Effect of temperature on starch degradation in Chlorella vulgaris 11h cells. Plant and Cell Physiology. 1982; 23(2): 333-341.
  50. Saad M.G., Selahi A., Zoromba M.S., Mekki L., El-Bana M., Dosoky N.S., Nobles D., Shafik H.M. A droplet-based gradient microfluidic to monitor and evaluate the growth of Chlorella vulgaris under different levels of nitrogen and temperatures. Algal Res. 2019; 44: 101657.
  51. James C., Al-Hinty S., Salman A. Growth and ω3 fatty acid and amino acid composition of microalgae under different temperature regimes. Aquaculture. 1989; 77(4): 337-351.
  52. Mehta S., Singh A., Gaur J. Kinetics of adsorption and uptake of Cu2+ by Chlorella vulgaris: influence of pH, temperature, culture age, and cations. J. Environmental Sci and Health, Part A. 2002; 37(3): 399-414.
  53. Chaudhary R., Tong Y.W., Dikshit A.K. Kinetic study of nutrients removal from municipal wastewater by Chlorella vulgaris in photobioreactor supplied with CO2-enriched air. Environmental Tech. 2018.
  54. Huo S., Chen Y., Liu Y., Zhu Y., Peng G., Dong R. Experiment on microalgae cultivation in BG11 nutrient solution adding biogas slurry. Transactions of the Chinese Soci Agric Engin. 2012; 28(8): 241-246.
  55. Mehta S., Tripathi B., Gaur J. Influence of pH, temperature, culture age and cations on adsorption and uptake of Ni by Chlorella vulgaris. European J. Protistology. 2000; 36(4): 443-450.
  56. Skowroński T., Szubińska S., Pawlik B., Jakubowski M., Bilewicz R., Cukrowska E. The influence of pH on cadmium toxicity to the green alga Stichococcus bacillaris and on the cadmium forms present in the culture medium. Environmental Pollution. 1991; 74(2): 89-100.
  57. Morweiser M., Kruse O., Hankamer B., Posten C. Developments and perspectives of photobioreactors for biofuel production. Applied Microbiology and Biotech. 2010; 87(4): 1291-1301.
  58. Shilton A., Pond treatment Tech. 2006.
  59. Vandamme D., Foubert I., Fraeye I., Meesschaert B., Muylaert K. Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresource Tech. 2012; 105: 114-119.
  60. Cho H.U., Kim Y.M., Choi Y-N., Xu X., Shin D.Y., Park J.M. Effects of pH control and concentration on microbial oil production from Chlorella vulgaris cultivated in the effluent of a low-cost organic waste fermentation system producing volatile fatty acids. Bioresource Tech. 2015; 184: 245-250.
  61. Huo S., Wang Z., Zhu S., Zhou W., Dong R., Yuan Z. Cultivation of Chlorella zofingiensis in bench-scale outdoor ponds by regulation of pH using dairy wastewater in winter, South China. Bioresource Tech. 2012; 121: 76-82.
  62. Memon A.R. Memon M.J. Process pH control and improvised cell cultivation during copolymer‐induced pelagic cultivation of benthal Chlorella vulgaris. Environmental Progress & Sustainable Energy. 2020; 39(3): e13347.
  63. Skjånes K., Knutsen G. Källqvist T., Lindblad P. H2 production from marine and freshwater species of green algae during sulfur deprivation and considerations for bioreactor design. Int J. hydrogen Energy. 2008; 33(2): 511-521.
  64. Darimont A. Frenay J. Metals in aqueous solutions in: biosorption of heavy metals. Metals in aqueous solutions in: biosorption of heavy metals. 1989: 65-79.
  65. Li F., Wu G., Hu S., Fan Z., Gao Q. Growth behavior and physiological characteristics of Chlorella vulgaris in the presence of deicing salt. Procedia Environmental Sci. 2013; 18: 20-25.
  66. Ru I.T.K., Sung Y.Y., Jusoh M., Wahid M.E.A., Nagappan T., Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology. 2020; 1(1): 2-11.
  67. Barahoei M., Hatamipour M.S., Afsharzadeh S. Direct brackish water desalination using Chlorella vulgaris microalgae. Process Safety and Environmental Protection. 2021; 148: 237-248.
  68. Ali H.E.A., El-fayoumy E.A., Rasmy W.E., Soliman R.M., Abdullah M.A. Two-stage cultivation of Chlorella vulgaris using light and salt stress conditions for simultaneous production of lipid, carotenoids, and antioxidants. J. Applied Phycology. 2021; 33(1): 227-239.
  69. Del Campo J., Rodriguez H., Moreno J., Vargas M., Rivas J., Guerrero M. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Applied microbiology and biotechnology. 2004; 64(6): 848-854.
  70. Pelah D., Sintov A., Cohen E. The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity. World J. Microbiology and Biotech. 2004; 20(5): 483-486.
  71. Chew K.W., Chia S.R., Show P.L., Yap Y.J., Ling T.C., Chang J-S. Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. J. the Taiwan Institute of Chem Engin. 2018; 91: 332-344.
  72. Bar E., Rise M., Vishkautsan M., Arad S.M. Pigment and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J Plant Physiology. 1995; 146(4): 527-534.
  73. Rzymski P., Budzulak J., Niedzielski P., Klimaszyk P., Proch J., Kozak L., Poniedziałek B. Essential and toxic elements in commercial microalgal food supplements. J Applied Phycology. 2019; 31(6): 3567-3579.
  74. Sun N., Wang Y., Li Y-T., Huang J-C., Chen F. Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochemistry. 2008; 43(11): 1288-1292.
  75. Wang Y., Liu Z., Qin S. Effects of iron on fatty acid and astaxanthin accumulation in mixotrophic Chromochloris zofingiensis. Biotech Letters. 2013; 35(3): 351-357.
  76. Sakarika M. Kornaros M. Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: Effect of different nutrient limitation strategies. Bioresource Tech. 2017; 243: 356-365.
  77. Devgoswami C.R., Kalita M., Talukdar J., Bora R., Sharma P. Studies on the growth behavior of Chlorella, Haematococcus and Scenedesmus sp. in culture media with different concentrations of sodium bicarbonate and carbon dioxide gas. African J. Biotech. 2011; 10(61): 13128-13138.
  78. Rashid N., Lee K., Han J-i., Gross M. Hydrogen production by immobilized Chlorella vulgaris: optimizing pH, carbon source and light. Bioprocess and biosystems engineering. 2013; 36(7): 867-872.
  79. Chu W-L. Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. European J Phycology. 2017; 52(4): 419-437.
  80. Hulatt C.J., Thomas D.N. Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresource Technology. 2011; 102(10): 5775-5787.
  81. Yen H-W., Hsu C-Y., Chen P-W. An integrated system of autotrophic Chlorella vulgaris cultivation using CO2 from the aerobic cultivation process of Rhodotorula glutinis. J. the Taiwan Institute of Chem Engin. 2016; 62: 158-161.
  82. Sun H., Ren Y., Mao X., Li X., Zhang H., Lao Y., Chen F. Harnessing C/N balance of Chromochloris zofingiensis to overcome the potential conflict in microalgal production. Communications biology. 2020; 3(1): 1-13.
  83. Zhu L., Takala J., Hiltunen E., Wang Z. Recycling harvest water to cultivate Chlorella zofingiensis under nutrient limitation for biodiesel production. Bioresource Tech. 2013; 144: 14-20.
  84. Kröger M., Müller-Langer F. Impact of heterotrophic and mixotrophic growth of microalgae on the production of future biofuels. Biofuels. 2011; 2(2): 145-151.
  85. Huang Y., Lou C., Luo L., Wang X.C. Insight into nitrogen and phosphorus coupling effects on mixotrophic Chlorella vulgaris growth under stably controlled nutrient conditions. Sci. the Total Environment. 2021; 752: 141747.
  86. Mirizadeh S., Nosrati M., Shojaosadati S.A. Synergistic effect of nutrient and salt stress on lipid productivity of Chlorella vulgaris through two-stage cultivation. BioEnergy Res. 2020; 13(2): 507-517.
  87. Li P., Sun X., Sun X., Tang J., Turaib A., Wang X., Cheng Z., Deng L., Zhang Y. Response of lipid productivity to photosynthesis of Chlorella vulgaris under various nutrient stress modes. J. Renewable and Sustainable Energy. 2020; 12(5): 056102.
  88. Mao X., Wu T., Sun D., Zhang Z., Chen F. Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresource Tech. 2018; 249: 791-798.
  89. Xie T., Xia Y., Zeng Y., Li X., Zhang Y. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy. Bioresource Tech. 2017; 233: 247-255.
  90. Liu J., Mao X., Zhou W., Guarnieri M.T. Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis. Bioresource Tech. 2016; 214: 319-327.
  91. Xu Y., Falarz L., Chen G. Characterization of type-2 diacylglycerol acyltransferases in the green microalga Chromochloris zofingiensis. J Agric Food Chem. 2018; 67(1): 291-298.
  92. Chen J., Jiang X., Wei D. Effects of urea on cell growth and physiological response in pigment biosynthesis in mixotrophic Chromochloris zofingiensis. J. Applied Phycology. 2020; 32(3): 1607-1618.
  93. Lam M.K., Lee K.T. Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Applied Energy. 2012; 94: 303-308.
  94. Chew K.W., Chia S.R., Show P.L., Ling T.C., Arya S.S., Chang J.-S. Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris. Bioresource Technology. 2018; 267: 356-362.
  95. Alcántara C., de Godos I., Muñoz R. Chapter 11 - Wastewater treatment and biomass generation with algae, in Wastewater Treatment Residues as Resources for Biorefinery Products and Biofuels, J.A. Olivares, et al., Editors. 2020; Elsevier, 229-254.
  96. Gardner M., Comber S., Scrimshaw M.D., Cartmell E., Lester J., Ellor B. The significance of hazardous chemicals in wastewater treatment works effluents. Sci the Total Environment. 2012; 437: 363-372.
  97. Mulders K.J., Weesepoel Y., Bodenes P., Lamers P.P., Vincken J-P., Martens D.E., Gruppen H., Wijffels R.H. Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study. J. Applied Phycology. 2015; 27(1): 125-140.
  98. Aydoner Coban G., Dasgan H., Akhoundnejad Y., Ak Cimen B. Use of microalgae (Chlorella vulgaris) to save mineral nutrients in soilless grown tomato. in XXX International Horticultural Congress IHC2018: II International Symposium on Soilless Culture and VIII Int. 2018; 1273.
  99. Gao F., Yang Z-H., Li C., Zeng G-M., Ma D-H., Zhou L. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresource Tech. 2015; 179: 8-12.
  100. Morschett H., Freier L., Rohde J., Wiechert W., von Lieres E., Oldiges M. A framework for accelerated phototrophic bioprocess development: integration of parallelized microscale cultivation, laboratory automation and Kriging-assisted experimental design. Biotechnology for Biofuels. 2017; 10(1): 1-13.
  101. Alketife A.M., Judd S., Znad H. Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris. Environmental Technology. 2017; 38(1): 94-102.
  102. Arbib Z., Ruiz J., Álvarez-Díaz P., Garrido-Pérez C., Barragan J., Perales J.A. Effect of pH control by means of flue gas addition on three different photo-bioreactors treating urban wastewater in long-term operation. Ecological Engineering. 2013; 57: 226-235.
  103. Sun X., Zhong Y., Huang Z., Yang Y. Selenium accumulation in unicellular green alga Chlorella vulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments. PLoS One. 2014; 9(11): e112270.
  104. Yang K., Qin L., Wang Z., Feng W., Feng P., Zhu S., Xu J., Yuan Z. Water-saving analysis on an effective water reuse system in biodiesel feedstock production based on Chlorella zofingiensis fed-batch cultivation. Water Sci.Tech. 2015; 71(10): 1562-1568.
  105. Sun D., Zhang Z. Reactive oxygen species derived from NADPH oxidase regulate astaxanthin and total fatty acid accumulation in Chromochloris zofingiensis. J. Applied Phycology. 2021; 33(2): 819-827.
  106. Heredia-Arroyo T., Wei W., Ruan R., Hu B. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and Bioenergy. 2011; 35(5): 2245-2253.
  107. Rodriguez-Garcia I., Guil-Guerrero J.L. Evaluation of the antioxidant activity of three microalgal species for use as dietary supplements and in the preservation of foods. Food Chem. 2008; 108(3): 1023-1026.
  108. Chen T., Wei D., Chen G., Wang Y., Chen F. Employment of organic acids to enhance astaxanthin formation in heterotrophic Chlorella zofingiensis. J. Food Processing and Preservation. 2009; 33(2): 271-284.
  109. Enyidi U.D. Chlorella vulgaris as protein source in the diets of african catfish Clarias gariepinus. Fishes. 2017; 2(4): 17.
  110. Yoshida H., Yanai H., Ito K., Tomono Y., Koikeda T., Tsukahara H., Tada N. Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia. Atherosclerosis. 2010; 209(2): 520-523.
  111. Jyonouchi H., Zhang L., Tomita Y. Studies of immunomodulating actions of carotenoids. II. astaxanthin enhances in vitro antibody production to T‐dependent antigens without facilitating polyclonal B‐cell activation. 1993.
  112. Tamaru C.S., Ako H. Using commercial feeds for the culture of freshwater ornamental fishes in Hawaii. in UJNR AQUACULTURE PANEL SYMPOSIUM. 1999.