The Classification of Medicinal Plants used in Traditional Persian Medicine for the Treatment of Liver Disease based on Phytochemical Properties

Document Type : Research Paper

Authors

1 Farzanegan Campus, Semnan University, Semnan, Iran

2 Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran

Abstract

Chronic and acute liver diseases are considered a global issue and their medical treatments are commonly challenging to manage. Traditional medicines have used natural products for thousands of years to prevent and treat various diseases. Recent studies have revealed that the pharmacological impacts of herbs are primarily determined by their phytochemical constituents. Therefore, understanding plant chemistry is crucial for the therapeutic use of medicinal plants. In this review, we first introduced some medicinal plants that have the potential to be beneficial for treating liver diseases and disorders, based on Traditional Persian Medicine (TPM) textbooks. Subsequently, we investigated the secondary metabolites of these medicinal plants by analyzing pharmacological research collected from electronic databases. We also discussed their scientific and family names. According to TPM textbooks, 77 medical plants have been identified for the treatment of liver defects, belonging to 43 different families. Their secondary metabolites were studied through data obtained from electronic databases such as Google Scholar, PubMed, Science Direct, and Web of Science. These findings suggest that natural plant extracts hold promise for the prevention and treatment of liver diseases. 

Keywords

Main Subjects


  1. Yuan H., Ma Q., Ye L., Piao G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules. 2016;21(5).
  2. Rabizadeh, F., Mirian, M.S., Doosti, R., Kiani-Anbouhi, R. and Eftekhari, E. Phytochemical Classification of Medicinal Plants Used in the Treatment of Kidney Disease Based on Traditional Persian Medicine. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID 8022599, 13 page
  3. Hamedi A., Zarshenas M.M., Sohrabpour M., Zargaran A. Herbal medicinal oils in traditional Persian medicine. Pharmaceutical biology. 2013;51(9):1208-18.
  4. Mollica A., Zengin G., Locatelli M., Stefanucci A., et al. Anti-diabetic and anti-hyperlipidemic properties of Capparis spinosa: In vivo and in vitro evaluation of its nutraceutical potential. Journal of Functional Foods. 2017;35:32-42.
  5. Muria‐Gonzalez M.J., Chooi Y.H., Breen S., Solomon P.S. The past, present and future of secondary metabolite research in the D othideomycetes. Molecular plant pathology. 2015;16(1):92-107.
  6. Pang Z., Chen J., Wang T., Gao C., et al. Linking plant secondary metabolites and plant microbiomes: a review. Frontiers in Plant Science. 2021;12:621276.
  7. Lee C.-H., Park S.-W., Kim Y.S., Kang S.S., et al. Protective mechanism of glycyrrhizin on acute liver injury induced by carbon tetrachloride in mice. Biological and Pharmaceutical Bulletin. 2007;30(10):1898-904.
  8. Gao X., Wang Y., Li Y., Wang Y., et al. Huganpian, a traditional chinese medicine, inhibits liver cancer growth in vitro and in vivo by inducing autophagy and cell cycle arrest. Biomedicine & Pharmacotherapy. 2019;120:109469.
  9. Zhang L., Su S., Zhu Y., Guo J., et al. Mulberry leaf active components alleviate type 2 diabetes and its liver and kidney injury in db/db mice through insulin receptor and TGF-β/Smads signaling pathway. Biomedicine & Pharmacotherapy. 2019;112:108675.
  10. Nimrouzi M., Mahbodi A., Jaladat A.-M., Sadeghfard A., et al. Hijamat in traditional Persian medicine: risks and benefits. Journal of evidence-based complementary & alternative medicine. 2014;19(2):128-36.
  11. Yilmaz B. Chemical constituents of Ajuga chamaepitys (L.) Schreb growing in Turkey by GC-MS method. Int J Pharmacol. 2019;6(3):108-12.
  12. Khemkham A., Belhadj S., Meddour R., Kenmoku H., et al. HS-SPME-GC/MS analysis of 3lamiaceae plants: Ajuga iva (L.) Schreb., Salvia verbenacal. and Thymus algeriensisboiss. & Reut. Journal of Fundamental and Applied Sciences. 2020;12(2):700-11.
  13. Lakshmi P., Rajalakshmi P. Identification of phyto components and its biological activities of aloe vera through the gas chromatography-mass spectrometry. International research journal of pharmacy. 2011;2(5):247-9.
  14. Valiei M., Shafaghat A., Salimi F. Chemical composition and antimicrobial activity of the flower and root hexane extracts of Althaea officinalis in Northwest Iran. Journal of medicinal plants research. 2011;5(32):6972-6.
  15. Canlı K., Yetgin A., Akata I., Altuner E.M. Antimicrobial activity and chemical composition screening of Anacyclus pyrethrum Indian Journal of Pharmaceutical Education and Research. 2017.
  16. Awad H., Awda J.M., Abd-Alssirag M., Allaalfalahi D. GC-mass analysis of (Apium graveolens) leaf extracts obtained with aqueous and methanol extraction and study its antimicrobial activity. Asian Journal of Microbiology, Biotechnology & Environmental Sciences. 2019;21.
  17. Bylka W., Szaufer‐Hajdrych M., Matławska I., Goślińska O. Antimicrobial activity of isocytisoside and extracts of Aquilegia vulgaris Letters in applied microbiology. 2004;39(1):93-7.
  18. Dhouioui M., Boulila A., Chaabane H., Zina M.S., et al. Seasonal changes in essential oil composition of Aristolochia longa ssp. paucinervis Batt.(Aristolochiaceae) roots and its antimicrobial activity. Industrial Crops and Products. 2016;83:301-6.
  19. Shah A.J., Gilani A.-H., Abbas K., Rasheed M., et al. Studies on the chemical composition and possible mechanisms underlying the antispasmodic and bronchodilatory activities of the essential oil of Artemisia maritima Archives of pharmacal research. 2011;34:1227-38.
  20. Zhigzhitzhapova S., Popov D., Pintaeva E.T., Radnaeva L., et al. Essential oil from Artemisia sieversiana and development of related oil-in-water emulsions. Pharmaceutical Chemistry Journal. 2017;51:388-90.
  21. Gibernau M., Favre C., Talou T., Raynaud C. Floral odor of Arum italicum. Aroideana. 2004;27:142-7.
  22. Kochmarov V., Marinov L., Kozuharova E., Hristova-Avakumova N., et al. Exploration of collagenase, cyclooxigenases, angiogenesis and free radical processes as the putative pharmacological targets of Arum maculatum Biotechnology & Biotechnological Equipment. 2020;34(1):126-34.
  23. Wilczewska A.Z., Ulman M., Chilmończyk Z., Maj J., et al. Comparison of volatile constituents of Acorus calamus and Asarum europaeum obtained by different techniques. Journal of Essential Oil Research. 2008;20(5):390-5.
  24. Jadhav A., Bhutani K. Steroidal saponins from the roots of Asparagus adscendens Roxb and Asparagus racemosus Willd. 2006.
  25. Zhang H., Birch J., Pei J., Mohamed Ahmed I.A., et al. Identification of six phytochemical compounds from Asparagus officinalis root cultivars from New Zealand and China using UAE-SPE-UPLC-MS/MS: effects of extracts on H2O2-induced oxidative stress. Nutrients. 2019;11(1):107.
  26. SR J S.K. Screening of phytochemical and GC-MS analysis of some bioactive constituents of Asparagus racemosus. Screening. 2014;6(2):428-32.
  27. Sharma A., Rai P., Prasad S. GC–MS detection and determination of major volatile compounds in Brassica juncea leaves and seeds. Microchemical Journal. 2018;138:488-93.
  28. Popović-Djordjević J., Cengiz M., Ozer M.S., Sarikurkcu C. Calamintha incana: essential oil composition and biological activity. Industrial Crops and Products. 2019;128:162-6.
  29. Devki G.S., Sisodia R. Screening of the potential phytochemicals from the capparis decidua fruit extract using GC-MS. 2020.
  30. Altameme H.J.M. GC-MS and FTIR analysis Phytocomponents on different parts of Capparis spinosa(Capparidaceae) in Iraq. Journal of Chemical and Pharmaceutical Sciences. 2016;9(4):3269-82.
  31. Lieb V.M., Esquivel P., Castillo E.C., Carle R., et al. GC–MS profiling, descriptive sensory analysis, and consumer acceptance of Costa Rican papaya (Carica papaya) fruit purees. Food chemistry. 2018;248:238-46.
  32. Kapoor I.P.S., Singh B., Singh G., De Heluani C.S., et al. Chemistry and antioxidant activity of essential oil and oleoresins of black caraway (Carum bulbocastanum) fruits: Part 69. Journal of the Science of Food and Agriculture. 2010;90(3):385-90.
  33. Fang R., Jiang C.H., Wang X.Y., Zhang H.M., et al. Insecticidal activity of essential oil of Carum carvi fruits from China and its main components against two grain storage insects. Molecules. 2010;15(12):9391-402.
  34. Kazemi M. GC/MS analyses for detection and identification of antioxidant constituents of Carum copticum essential oil. Thai Journal of Agricultural Science. 2014;47(3):141-5.
  35. Sahaf B.Z., Moharramipour S., Meshkatalsadat M.H. Chemical constituents and fumigant toxicity of essential oil from Carum copticum against two stored product beetles. Insect Science. 2007;14(3):213-8.
  36. Sahu L., Joshi P., Rout O., Sahu A. Phytochemical evaluation of Celastrus paniculatus seed oil extracted by a method used by ‘Uraanv’tribe of Chhattisgarh. Journal of Ayurveda and Integrated Medical Sciences. 2020;5(02):57-65.
  37. Singh R., Chahal K.K. Cichorium intybus from India: GC-MS profiling, phenolic content and in vitro antioxidant capacity of sequential soxhlet extracted roasted roots. Brazilian Archives of Biology and Technology. 2019;62.
  38. Al-Akhras M.-A.H., Aljarrah K., Al-Khateeb H., Jaradat A., et al. Introducing Cichorium pumilum as a potential therapeutical agent against drug-induced benign breast tumor in rats. Electromagnetic Biology and Medicine. 2012;31(4):299-309.
  39. Baruah A., Nath S.C., Hazarika A.K., Sarma T.C. Essential Oils of the Leaf, Stem Bark and Panicle of Cinnamomum bejolghota (Buch.-Ham.) Sweet. Journal of essential oil research. 1997;9(2):243-5.
  40. Bakirtzi C., Tsatalas P., Spanakis M., Kokkalou E. GC-MS analysis of volatile constituents of Cornus mas fruits and pulp. Journal of Essential Oil Bearing Plants. 2013;16(2):183-200.
  41. Singh S., Devi B. Estimation of phytoconstituents from Citrullus colocynthis (L.) schrad roots extract by GC-MS spectroscopy. International Journal of Science and Research. 2016;7.
  42. Najjaa H., Neffati M., Zouari S., Ammar E. Essential oil composition and antibacterial activity of different extracts of Allium roseum, a North African endemic species. Comptes Rendus Chimie. 2007;10(9):820-6.
  43. Boeing T., Tafarelo Moreno K.G., Gasparotto Junior A., Mota da Silva L., et al. Phytochemistry and pharmacology of the genus Equisetum (Equisetaceae): A narrative review of the species with therapeutic potential for kidney diseases. Evidence-Based Complementary and Alternative Medicine. 2021;2021.
  44. Sharma R.J., Gupta R.C., Bansal A.K., Singh I.P. Metabolite Fingerprinting of Eugenia jambolana Fruit Pulp Extracts using NMR, HPLC-PDA-MS, GC-MS, MALDI-TOF-MS and ESI-MS/MS Spectrometry. Natural Product Communications. 2015;10(6):1934578X1501000644.
  45. Judzentiene A. Chemical composition of leaf and inflorescence essential oils of Eupatorium cannabinum L. from Eastern Lithuania. Journal of Essential Oil Research. 2007;19(5):403-6.
  46. Muthulakshmi A., Mohan V. GC-MS analysis of bioactive components of Feronia elephantum Correa (Rutaceae). Journal of Applied Pharmaceutical Science. 2012(Issue):69-74.
  47. Afifi S.M., El-Mahis A., Heiss A.G., Farag M.A. Gas chromatography–mass spectrometry-based classification of 12 fennel (Foeniculum vulgare Miller) varieties based on their aroma profiles and estragole levels as analyzed using chemometric tools. ACS omega. 2021;6(8):5775-85.
  48. Păltinean R., Mocan A., Vlase L., Gheldiu A.M., et al. Evaluation of Polyphenolic Content, Antioxidant and Diuretic Activities of Six Fumaria Species. Molecules. 2017;22(4).
  49. Jameel M., Ali A., Ali M. New phytoconstituents from the aerial parts of Fumaria parviflora Journal of advanced pharmaceutical technology & research. 2014;5(2):64-9.
  50. Mustafa A.M., Caprioli G., Maggi F., Vittori S., et al. Comparative analysis of the volatile profiles from wild, cultivated, and commercial roots of Gentiana lutea by headspace solid phase microextraction (HS–SPME) coupled to gas chromatography mass spectrometry (GC–MS). Food analytical methods. 2016;9:311-21.
  51. Akhtar R., Shahzad A. Alginate encapsulation in Glycyrrhiza glabra L. with phyto-chemical profiling of root extracts of in vitro converted plants using GC-MS analysis. Asian Pacific journal of tropical biomedicine. 2017;7(10):855-61.
  52. Singh S., Sharma P.C. Gas chromatography–mass spectrometry (GC–MS) profiling reveals substantial metabolome diversity in seabuckthorn (Hippophae rhamnoides L.) berries originating from different geographical regions in the Indian Himalayas. Phytochemical Analysis. 2022;33(2):214-25.
  53. Hosokawa K., Fukunaga Y. Production of essential oils by flowers of Hyacinthus orientalis regenerated in vitro. Plant Cell Reports. 1995;14:575-9.
  54. Smelcerovic A., Spiteller M., Ligon A.P., Smelcerovic Z., et al. Essential oil composition of Hypericum species from Southeastern Serbia and their chemotaxonomy. Biochemical Systematics and Ecology. 2007;35(2):99-113.
  55. Schwob I., Bessiere J., Dherbomez M., Viano J. Composition and antimicrobial activity of the essential oil of Hypericum coris. Fitoterapia. 2002;73(6):511-3.
  56. Morshedloo M.R., Ebadi A., Maggi F., Fattahi R., et al. Chemical characterization of the essential oil compositions from Iranian populations of Hypericum perforatum Industrial Crops and Products. 2015;76:565-73.
  57. Kara N., Baydar H. Scent components in essential oil, resinoids and absolute of Iris (Iris florentina). Anadolu Tarim Bilimleri Dergisi. 2014;29(1):70.
  58. Peris I., Blázquez M.A. Comparative GC-MS analysis of bay leaf (Laurus nobilis) essential oils in commercial samples. International journal of food properties. 2015;18(4):757-62.
  59. Hussein H.M. DETERMINATION OF PHYTOCHEMICAL COMPOSITION AND TEN ELEMENTS CONTENT (CD, CA, CR, CO, FE, PB, MG, MN, NI AND ZN) OF CARDARIA DRABA BY GC-MS, FT-IR AND AAS TECHNIQUES. International Journal of Pharma and Bio Sciences. 2016;7(3):1009-17.
  60. Cheriet T., Mancini I., Seghiri R., Benayache F., et al. Chemical constituents and biological activities of the genus Linaria (Scrophulariaceae). Natural product research. 2015;29(17):1589-613.
  61. Rehman R.N.U., You Y., Yang C., Khan A.R., et al. Characterization of phenolic compounds and active anthocyanin degradation in crabapple (Malus orientalis) flowers. Horticulture, Environment, and Biotechnology. 2017;58:324-33.
  62. Al-Qarawi K.K., Al-Obaidi H.M.R. Detection of the active compounds in the leaves of the Common mallow plant Malva parviflora using GC-MS and HPLC technology. Kufa Journal For Agricultural Sciences. 2018;10(4).
  63. Jabbari H., Shendabadizad R. GC-MS analysis of essential oils of Humulusn lupulus, Malva Sylvestris and thymus plants in water solvent. Journal of Advanced Pharmacy Education & Research. 2020;10.
  64. Mou K.M., Parvin M.N., Dash P.R. International Journal of Pharmacognosy and Pharmaceutical Research.
  65. Cudalbeanu M., Furdui B., Cârâc G., Barbu V., et al. Antifungal, antitumoral and antioxidant potential of the danube delta nymphaea alba extracts. Antibiotics. 2019;9(1):7.
  66. Intirach J., Junkum A., Lumjuan N., Chaithong U., et al. Antimosquito property of Petroselinum crispum (Umbellifereae) against the pyrethroid resistant and susceptible strains of Aedes aegypti (Diptera: Culicidae). Environmental Science and Pollution Research. 2016;23:23994-4008.
  67. Apetrei L.C., Spac A., Brebu M., Tuchilus C., et al. Composition, antioxidant and antimicrobial activity of the essential oils of a full grown tree of Pinus cembra L. from the Calimani mountains (Romania). Journal of the Serbian Chemical Society. 2013;78(1):27-37.
  68. Aloui F., Baraket M., Jedidi S., Hosni K., et al. Chemical composition, anti-radical and antibacterial activities of essential oils from needles of Pinus halepensis, P. pinaster Aiton., and P. pinea L. Journal of Essential Oil Bearing Plants. 2021;24(3):453-60.
  69. Tumen I., Hafizoglu H., Kilic A., Dönmez I.E., et al. Yields and constituents of essential oil from cones of Pinaceae spp. natively grown in Turkey. Molecules. 2010;15(8):5797-806.
  70. Andriana Y., Xuan T.D., Quy T.N., Tran H.-D., et al. Biological activities and chemical constituents of essential oils from Piper cubeba Bojer and Piper nigrum L. Molecules. 2019;24(10):1876.
  71. Assimopoulou A., Papageorgiou V. GC‐MS analysis of penta‐and tetra‐cyclic triterpenes from resins of Pistacia species. Part I. Pistacia lentiscus Chia. Biomedical Chromatography. 2005;19(4):285-311.
  72. Assimopoulou A., Papageorgiou V. GC‐MS analysis of penta‐and tetra‐cyclic triterpenes from resins of Pistacia species. Part II. Pistacia terebinthus Chia. Biomedical Chromatography. 2005;19(8):586-605.
  73. Piccolella S., Nocera P., Carillo P., Woodrow P., et al. An apolar Pistacia lentiscus leaf extract: GC-MS metabolic profiling and evaluation of cytotoxicity and apoptosis inducing effects on SH-SY5Y and SK-N-BE (2) C cell lines. Food and Chemical Toxicology. 2016;95:64-74.
  74. Saitta M., La Torre G.L., Potortì A.G., Di Bella G., et al. Polyphenols of pistachio (Pistacia vera L.) oil samples and geographical differentiation by principal component analysis. Journal of the American Oil Chemists' Society. 2014;91:1595-603.
  75. Durgawale, T.P., Khanwelkar, C.C. and Pratik, P.D., 2018. Phytochemical analysis of Portulaca oleracea and Portulaca Quadrifida extracts using Gas Chromatography and Mass Spectrophotometry. Asian J Pharm Clin Res.
  76. Tsao R., Zhou T. Interaction of monoterpenoids, methyl jasmonate, and Ca2+ in controlling postharvest brown rot of sweet cherry. HortScience. 2000;35(7):1304-7.
  77. Feduraev P., Skrypnik L., Nebreeva S., Dzhobadze G., et al. Variability of phenolic compound accumulation and antioxidant activity in wild plants of some Rumex species (Polygonaceae). Antioxidants. 2022;11(2):311.
  78. Allaway Z., Sosa A. Chemical study in leaf and fruit of some species for Populus and Salix in Diwaniyah governorate using gas chromatography-mass spectrometry (GS-MS). Plant Archives. 2019;19:102-11.
  79. Shamspur T., Sheikhshoaie I., Afzali D., Mostafavi A., et al. Chemical Compositions of Salix aegyptiaca. L. Obtained by Simultaneous Hydrodistilation and Extraction. Journal of Essential Oil Bearing Plants. 2011;14(5):543-8.
  80. Javidnia K., Shokrollahi A., Kazemi M., Shahabipour S. Volatile composition of the essential oil Salix excelsa from Iran. Research in Pharmaceutical Sciences. 2012;7(5):765.
  81. Affes S., Ben Younes A., Frikha D., Allouche N., et al. ESI-MS/MS analysis of phenolic compounds from Aeonium arboreum leaf extracts and evaluation of their antioxidant and antimicrobial activities. Molecules. 2021;26(14):4338.
  82. Cabral C., Lemos M., Cavaleiro C., Cruz M., et al. Essential oil of Seseli tortuosum L. from Portugal: safety and anti-inflammatory potential evaluation. Arabian Journal of Medicinal and Aromatic Plants. 2015;1(1):31-43.
  83. Hanifah A., Maharijaya A., Putri S.P., Laviña W.A., et al. Untargeted metabolomics analysis of eggplant (Solanum melongena L.) fruit and its correlation to fruit morphologies. Metabolites. 2018;8(3):49.
  84. Giuliani C., Pellegrino R.M., Selvaggi R., Tani C., et al. Secretory structures and essential oil composition in Stachys officinalis (L.) Trevisan subsp. officinalis (Lamiaceae) from Italy. Natural product research. 2017;31(9):1006-13.
  85. Teles A.M., Silva-Silva J.V., Fernandes J.M.P., Abreu-Silva A.L., et al. GC-MS characterization of antibacterial, antioxidant, and antitrypanosomal activity of Syzygium aromaticum essential oil and eugenol. Evidence-Based Complementary and Alternative Medicine. 2021;2021:1-12.
  86. Jasim S.F., Baqer N.N., Alraheem E. Detection of phytochemical constituent in flowers of Viola odorata by gas chromatography-mass spectrometry. Asian Journal of Pharmaceutical and Clinical Research. 2018;11(5):262-9.
  87. Petretto G.L., Mercenaro L., Urgeghe P.P., Fadda C., et al. Grape and wine composition in Vitis vinifera L. Cv. Cannonau explored by GC-MS and sensory analysis. Foods. 2021;10(1):101.
  88. Chinonye I., Oze R., Lynda O., Nkwoada A., et al. Phytochemical and Gc/Ms Analysis of The Rhizome of Zingiber officinale Plant Grown In Eastern Part Of Nigeria. African Journal of Biology and Medical Research. 2016;1(1):43-54.
  89. Song L., Zheng J., Zhang L., Yan S., et al. Phytochemical profiling and fingerprint analysis of Chinese Jujube (Ziziphus jujuba Mill.) Leaves of 66 cultivars from Xinjiang Province. Molecules. 2019;24(24):4528.
  90. Huang K., Zhang P., Zhang Z., Youn J.Y., et al. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms. Pharmacology & therapeutics. 2021;225:107843.
  91. Ren J.L., Zhang A.H., Wang X.J. Traditional Chinese medicine for COVID-19 treatment. Pharmacological research. 2020;155:104743.
  92. Fettach S., Mrabti H.N., Sayah K., Bouyahya A., et al. Phenolic content, acute toxicity of Ajuga iva extracts and assessment of their antioxidant and carbohydrate digestive enzyme inhibitory effects. South African Journal of Botany. 2019;125:381-5.
  93. Abubakar A.M., Dibal N.I., Attah M.O.O., Chiroma S.M. Exploring the antioxidant effects of Aloe vera: Potential role in controlling liver function and lipid profile in high fat and fructose diet (HFFD) fed mice. Pharmacological Research - Modern Chinese Medicine. 2022;4:100150.
  94. Bai L., Cui X., Cheng N., Cao W., et al. Hepatoprotective standardized EtOH–water extract of the leaves of Ziziphus jujuba. Food & function. 2017;8(2):816-22.
  95. Shen X., Tang Y., Yang R., Yu L., et al. The protective effect of Ziziphus jujuba fruit on carbon tetrachloride-induced hepatic injury in mice by anti-oxidative activities. Journal of Ethnopharmacology. 2009;122(3):555-60.
  96. AlSaid M., Mothana R., Raish M., Al-Sohaibani M., et al. Evaluation of the Effectiveness of Piper cubeba Extract in the Amelioration of CCl4-Induced Liver Injuries and Oxidative Damage in the Rodent Model. BioMed Research International. 2015;2015:359358.
  97. Ali S., Prasad R., Mahmood A., Routray I., et al. Eugenol-rich Fraction of Syzygium aromaticum (Clove) Reverses Biochemical and Histopathological Changes in Liver Cirrhosis and Inhibits Hepatic Cell Proliferation. Journal of cancer prevention. 2014;19(4):288-300.
  98. Selles C., Medjdoub H., Dib M.E.A., Zerriouh M., et al. Anti-diabetic activity of aqueous root extract of Anacyclus pyrethrum L. in streptozotocin-induced-diabetic rats. Journal of medicinal plants research. 2012;6(16):3193-8.
  99. Shabbir U., Anjum I., Naveed Mushtaq M., Nasir Hayat Malik M., et al. Uroprotective and Hepatoprotective Potential of Anagallis arvensis against the Experimental Animal Model. Journal of Tropical Medicine. 2022;2022.
  100. Sukketsiri W., Chonpathompikunlert P., Tanasawet S., Choosri N., et al. Effects of Apium graveolens extract on the oxidative stress in the liver of adjuvant-induced arthritic rats. Preventive Nutrition and Food Science. 2016;21(2):79.
  101. Amat N., Upur H., Blažeković B. In vivo hepatoprotective activity of the aqueous extract of Artemisia absinthium L. against chemically and immunologically induced liver injuries in mice. Journal of ethnopharmacology. 2010;131(2):478-84.
  102. Sunday R.M., Obuotor E.M., Kumar A. Antidiabetic Effect of Asparagus adscendens Roxb. in RIN-5F Cells, HepG2 Cells, and Wistar Rats. Canadian Journal of Biotechnology. 2019;3(1):132.
  103. Shaban N.Z., El-Kot S.M., Awad O.M., Hafez A.M., et al. The antioxidant and anti-inflammatory effects of Carica Papaya Linn. seeds extract on CCl4-induced liver injury in male rats. BMC Complementary Medicine and Therapies. 2021;21(1):1-15.
  104. Sangsefidi Z.S., Yarhosseini F., Hosseinzadeh M., Ranjbar A., et al. The effect of (Cornus mas L.) fruit extract on liver function among patients with non-alcoholic fatty liver: A double‐blind randomized clinical trial. Phytotherapy Research. 2021;35(9):5259-68.
  105. Vakiloddin S., Fuloria N., Fuloria S., Dhanaraj S.A., et al. Evidences of hepatoprotective and antioxidant effect of Citrullus colocynthis fruits in paracetamol induced hepatotoxicity. Pak J Pharm Sci. 2015;28(3):951-7.
  106. Sharma P., Bodhankar S.L., Thakurdesai P.A. Protective effect of aqueous extract of Feronia elephantum correa leaves on thioacetamide induced liver necrosis in diabetic rats. Asian Pacific journal of tropical biomedicine. 2012;2(9):691-5.
  107. Fatima S., Akhtar M.F., Ashraf K.M., Sharif A., et al. Antioxidant and alpha amylase inhibitory activities of Fumaria officinalis and its antidiabetic potential against alloxan induced diabetes. Cellular and Molecular Biology. 2019;65(2):50-7.
  108. Mihailović V., Katanić J., Mišić D., Stanković V., et al. Hepatoprotective effects of secoiridoid-rich extracts from Gentiana cruciata L. against carbon tetrachloride induced liver damage in rats. Food & function. 2014;5(8):1795-803.
  109. Abd-Al-Sattar Sadiq Layl L. Hepatoprotective effect of Glycyrrhiza glabra L. extracts against carbon tetrachloride-induced acute liver damage in rats. Extracts Against Carbon Tetrachloride-Induced Acute Liver Damage In Rats (June 30, 2016) TJPRC: International Journal Of Veterinary Science, Medicine & Research (TJPRC: IJVSMR) Vol. 2016;1:1-8.
  110. Al-Razzuqi R., Al-Jawad F., Al-Hussaini J., Al-Jeboori A. Hepatoprotective effect of Glycyrrhiza glabra in carbon tetrachloride-induced model of acute liver injury. J Phys Pharm Adv. 2012;2(7):259-63.
  111. Geetha S., Jayamurthy P., Pal K., Pandey S., et al. Hepatoprotective effects of sea buckthorn (Hippophae rhamnoides L.) against carbon tetrachloride induced liver injury in rats. Journal of the Science of Food and Agriculture. 2008;88(9):1592-7.
  112. Nawaz M.A., Aleem A., Hussain S.A., Manzoor M., et al. Hepatoprotective effect of methanolic extract of Iris florentina L. on paracetamol-induced liver toxicity in rats. Pakistan Journal of Pharmaceutical Sciences. 2022;35(5).
  113. Gasparyan G., Tiratsuyan S., Kazaryan S., Vardapetyan H. Effect of Laurus nobilis extract on the functioning of liver against CCl4 induced toxicity. Journal of Experimental Biology and Agricultural Sciences. 2015;3(2):174-83.
  114. Feng J., Gao H., Yang L., Xie Y., et al. Renoprotective and hepatoprotective activity of Lepidium draba L. extracts on oxymetholone‐induced oxidative stress in rat. Journal of Food Biochemistry. 2022;46(9):e14250.
  115. Mohammed D.M., Elsayed N., Abou Baker D.H., Ahmed K.A., et al. Bioactivity and antidiabetic properties of Malva parviflora L. leaves extract and its nano-formulation in streptozotocin-induced diabetic rats. Heliyon. 2022;8(12):e12027.
  116. Mallhi T.H., Abbas K., Ali M., Qadir M.I., et al. Hepatoprotective activity of methanolic extract of Malva parviflora against paracetamol-induced hepatotoxicity in mice. ||| Bangladesh Journal of Pharmacology. 2014;9(3):342-6.
  117. Ali S., Ansari K.A., Jafry M., Kabeer H., et al. Nardostachys jatamansi protects against liver damage induced by thioacetamide in rats. Journal of ethnopharmacology. 2000;71(3):359-63.
  118. Bakr R.O., El-Naa M.M., Zaghloul S.S., Omar M.M. Profile of bioactive compounds in Nymphaea alba L. leaves growing in Egypt: Hepatoprotective, antioxidant and anti-inflammatory activity. BMC Complementary and Alternative Medicine. 2017;17(1):1-13.
  119. Janakat S., Al-Merie H. Evaluation of hepatoprotective effect of Pistacia lentiscus, Phillyrea latifolia and Nicotiana glauca. Journal of ethnopharmacology. 2002;83(1-2):135-8.
  120. Asadian S., Moallem S.A., Moshiri M., Mansouri M., et al. Evacuation the Effect of Single-and Multi-dose Administration of Ethanolic Extract of Pinus eldarica Pollen Against Acetaminophen-induced Rat Liver Injury. International Journal of Basic Science in Medicine. 2020;5(4):160-5.
  121. Mavridis S., Gortzi O., Lalas S., Paraschos S., et al. Hepatoprotective effect of Pistacia lenticus var. Chia total extract against carbon tetrachloride-induced liver damage in rats. Planta Medica. 2008;74(09):PA339.
  122. Qiao J.-Y., Li H.-W., Liu F.-G., Li Y.-C., et al. Effects of Portulaca oleracea extract on acute alcoholic liver injury of rats. Molecules. 2019;24(16):2887.
  123. Sedaghat R., Roghani M., Ahmadi M., Ahmadi F. Antihyperglycemic and antihyperlipidemic effect of Rumex patientia seed preparation in streptozotocin-diabetic rats. Pathophysiology. 2011;18(2):111-5.
  124. Khan S.W., Tahir M., Lone K.P., Munir B., et al. Protective effect of Saccharum officinarum L.(sugar cane) juice on isoniazid induced hepatotoxicity in male albino mice. Journal of Ayub Medical College Abbottabad. 2015;27(2):346-50.
  125. Patel B., Patel J., Raval B. Hepatoprotective activity of Saccharum officinarum L. against paracetamol induced hepatotoxicity in rats. IJSPR, 2010a. 2010;4(1):102-8.
  126. Qadir M.I., Ali M., Saleem M., Hanif M. Hepatoprotective activity of aqueous methanolic extract of Viola odorata against paracetamol-induced liver injury in mice. ||| Bangladesh Journal of Pharmacology. 2014;9(2):198-202.
  127. Azari Z., Kherullahi Z., Mohammadghasemi F., Aghajany Nasab M., et al. Effect of the aqueous and hydro-alcoholic extracts of Viola odorata L. on biochemical and histologic liver parameters in diabetic Wistar rats. Anatomical Sciences Journal. 2020;17(1):21-32.
  128. Liu T., Zhao J., Ma L., Ding Y., et al. Hepatoprotective effects of total triterpenoids and total flavonoids from Vitis vinifera L against immunological liver injury in mice. Evidence-Based Complementary and Alternative Medicine. 2012;2012.