Green Synthesis of Silver Nanoparticles and Antibacterial Properties of Extracts of Capparis spinosa Leaves

Document Type : Research Paper

Authors

1 Internist, Department of Internal Medicine, University of Medical Sciences, Zabol, Iran

2 Department of Chemistry, Faculty of Science, Sistan and Baluchestan, Zahedan, Iran

3 Department of Pathology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran

4 Agricultural Biotechnology Research Institute, University of Zabol, Zabol, Iran

5 Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran

Abstract

Today, the production and use of materials with nanometer diversity is increasing day by day due to the unique and fascinating features of these materials. Until now, various physical and chemical methods have been used for the synthesis of silver nanoparticles (AgNPs), but the use of plants for the synthesis of AgNPs is very fast, simple, non-toxic, and environmentally friendly. In this research, the aqueous extract (AE) of Capparis plants was used for the biosynthesis of AgNPs. The color of the silver nitrate solution changed to reddish color after adding the extract. The Antimicrobial activity of AgNPs against Streptococcus pyogenes, Streptococcus pneumoniae, S. saprophyticus, Hafnia alvei,  Acinetobacter. baumannii, Enterococcus faecalis, Proteus mirabilis, Serratia marcescens, Staphylococcus aureus bacteria were investigated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using microdilution method. The amount of total phenol and flavonoids in the methanolic extract (ME) of capparis leaves was equal to 229.9- 28.09 mg per gram of dry matter. The antioxidant properties of the ME of capparis were 85.18%. The greatest effect of the ME of the medicinal plant capparis was 0.2315 on the inactivity of E. coli and the greatest effect of green AgNPs synthesized from the AE of the medicinal plant Capparis with ELISA of 0.3740 was on the inactivity of S. mutanis. The maximum diameter of the inhibitor zone (MDIZ) was 5.5 mm due to the inactivity of H. alvi bacteria. The results of this research showed that the leaf extract of the Capparis spinosa f. inermis Knocheplant is capable of synthesizing AgNPs and the synthetic nanoparticles showed good antimicrobial activity against pathogenic strains in vitro.

Keywords

Main Subjects


  1. Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Molecular aspects of Medicine. 2006;27(1):1-93.
  2. Hotez P.J. Blue marble health: an innovative plan to fight diseases of the poor amid wealth: JHU Press. 2016; 205 pages,
  3. Gorain B., Choudhury H., Molugulu N., Athawale R.B., Kesharwani P. Fighting strategies against the novel coronavirus pandemic: impact on global economy. Frontiers in Public Health. 2020;8:606129.
  4. Bano I., Butt U.D., Mohsan S.A.H. Chapter 25 - New challenges in drug discovery. In Das S Thomas S, Das P P (Eds.), Novel Platforms for Drug Delivery Applications (pp. 619-43): Woodhead Publishing. 2023,
  5. Abbas-Al-Khafaji Z.K., Aubais-aljelehawy Q.h. Evaluation of antibiotic resistance and prevalence of multi-antibiotic resistant genes among Acinetobacter baumannii strains isolated from patients admitted to al-yarmouk hospital. Cell. Mol. Biomed. Rep. 2021;1(2):60-68.
  6. Doosti-Moghaddam M., Miri H.R., Ghahghaei A., Hajinezhad M.R., Saboori H. Effect of unripe fruit extract of Momordica charantia on total cholesterol, total triglyceride and blood lipoproteins in the blood of rats with hyperlipidemia. Cell. Mol. Biomed. Rep. 2022;2(2):74-86.
  7. Saravani K., Mirsarzai Z., Sekhavati M. An introduction on cerebrovascular aneurysms during pregnancy. Cell. Mol. Biomed. Rep. 2021;1(3):98-104.
  8. Paramasivam R., Gopal D.R., Dhandapani R., Subbarayalu R., Elangovan M.P., Prabhu B., Veerappan V., Nandheeswaran A., Paramasivam S., Muthupandian S. Is AMR in Dairy Products a Threat to Human Health? An Updated Review on the Origin, Prevention, Treatment, and Economic Impacts of Subclinical Mastitis. Infection and Drug Resistance. 2022;16:155-78.
  9. Good M.C. Comparative and inducement appeals Rx by drug class. International Journal of Healthcare Management. 2022:1-11.
  10. Grunwald P. Pharmaceuticals: Some General Aspects Pharmaceutical Biocatalysis (pp. 1-40): Jenny Stanford Publishing. 2019,
  11. Ahani H., Attaran S. Therapeutic potential of Seabuckthorn (Hippophae rhamnoides L.) in medical sciences. Cell. Mol. Biomed. Rep. 2022;2(1):22-32.
  12. Ahmadi S. Antibacterial and antifungal activities of medicinal plant species and endophytes. Cell. Mol. Biomed. Rep. 2022;2(2):109-15.
  13. Monroy-Torres R., Castillo-Chávez Á., Carcaño-Valencia E., Hernández-Luna M., Caldera-Ortega A., Serafín-Muñoz A., Linares-Segovia B., Medina-Jiménez K., Jiménez-Garza O., Méndez-Pérez M. Food security, environmental health, and the economy in mexico: Lessons learned with the covid-19. Sustainability. 2021;13(13):7470.
  14. Hussain B., Sajid M.A., Nabeel M., Saeed A., Shah A.A. Study of assessment of knowledge of patients and health care professionals about the use of nutraceuticals. World Journal of Pharmaceutical Research. 2020;9(6):49-119.
  15. Pinto M., Bardach A., Palacios A., Biz A., Alcaraz A., Rodriguez B., Augustovski F., Pichon-Riviere A. Burden of smoking in Brazil and potential benefit of increasing taxes on cigarettes for the economy and for reducing morbidity and mortality. Cadernos de Saúde Pública. 2019;35(8):e001299118.
  16. Alavi M., Hamblin M.R. Antibacterial silver nanoparticles: effects on bacterial nucleic acids. Cell. Mol. Biomed. Rep. 2023;3(1):35-41.
  17. Alavi M., Hamblin M.R., Mozafari M.R., Rose Alencar de Menezes I., Douglas Melo Coutinho H. Surface modification of SiO2 nanoparticles for bacterial decontaminations of blood products. Cell. Mol. Biomed. Rep. 2022;2(2):87-98.
  18. Tula M.Y., Filgona J., Pukuma M.S. A Systematic review on the status of diarrheagenic Escherichia coli (DEC) pathotypes in Nigeria; the year 2000 – 2022. Cell. Mol. Biomed. Rep. 2022;2(4):213-29.
  19. Soltys L., Olkhovyy O., Tatarchuk T., Naushad M. Green synthesis of metal and metal oxide nanoparticles: Principles of green chemistry and raw materials. Magnetochemistry. 2021;7(11):145.
  20. Ahmed S., Ahmad M., Swami B.L., Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research. 2016;7(1):17-28.
  21. Arsana I.N., Juliasih N.K.A., Ayu Sauca Sunia Widyantari A.A., Suriani N.L., Manto A. GC-MS Analysis of the Active Compound in Ethanol Extracts of White Pepper (Piper nigrum L.) and Pharmacological Effects. Cell. Mol. Biomed. Rep. 2022;2(3):151-61.
  22. Talawar M.B., Sivabalan R., Mukundan T., Muthurajan H., Sikder A.K., Gandhe B.R., Rao A.S. Environmentally compatible next generation green energetic materials (GEMs). Journal of Hazardous Materials. 2009;161(2):589-607.
  23. Pang R., Zhang X. Achieving environmental sustainability in manufacture: A 28-year bibliometric cartography of green manufacturing research. Journal of Cleaner Production. 2019;233:84-99.
  24. Roy A., Bulut O., Some S., Mandal A.K., Yilmaz M.D. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC advances. 2019;9(5):2673-702.
  25. Kim D.Y., Kadam A., Shinde S., Saratale R.G., Patra J., Ghodake G. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. Journal of the Science of Food and Agriculture. 2018;98(3):849-64.
  26. Alavi M., Rai M., Martinez F., Kahrizi D., Khan H., Rose Alencar de Menezes I., Douglas Melo Coutinho H., Costa J.G.M. The efficiency of metal, metal oxide, and metalloid nanoparticles against cancer cells and bacterial pathogens: different mechanisms of action. Cell. Mol. Biomed. Rep. 2022;2(1):10-21.
  27. Salehi-Sardoei A., khalili h. Nitric oxide signaling pathway in medicinal plants. Cell. Mol. Biomed. Rep. 2022;2(1):1-10.
  28. Rajabi R., Hamdi S.M.M., Mirzaie A. Comparative study of antibacterial, cytotoxic and apoptotic effects of synthesized silver nanoparticles using Asparagus khorasanesis extract and commercial silver nanoparticles. [Orginal Article]. Journal Of Neyshabur University Of Medical Sciences. 2019;7(3):89-103.
  29. Dolatabadi S., Emrani S., Mehrafruz E., Zhiani R. Green synthesis and antibacterial effect of silver nanoparticles using Eucalyptus camaldulensis. [Orginal Article]. Journal Of Neyshabur University Of Medical Sciences. 2017;5(3):74-85.
  30. Krystyjan M., Khachatryan G., Khachatryan K., Krzan M., Ciesielski W., Żarska S., Szczepankowska J. Polysaccharides Composite Materials as Carbon Nanoparticles Carrier. Polymers. 2022;14(5):948.
  31. Khan Y., Sadia H., Ali Shah S.Z., Khan M.N., Shah A.A., Ullah N., Ullah M.F., Bibi H., Bafakeeh O.T., Khedher N.B. Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts. 2022;12(11):1386.
  32. Li X.-Q., Elliott D.W., Zhang W.-X. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects Particulate Systems in Nano-and Biotechnologies (pp. 309-30): CRC Press. 2008,
  33. Tiwari S.K., Bystrzejewski M., De Adhikari A., Huczko A., Wang N. Methods for the conversion of biomass waste into value-added carbon nanomaterials: Recent progress and applications. Progress in Energy and Combustion Science. 2022;92:101023.
  34. Sintubin L., De Windt W., Dick J., Mast J., Van Der Ha D., Verstraete W., Boon N. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Applied microbiology and biotechnology. 2009;84(4):741-49.
  35. Benakashani F., Allafchian A.R., Jalali S.A.H. Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity. Karbala International Journal of Modern Science. 2016;2(4):251-58.
  36. Chaloupka K., Malam Y., Seifalian A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology. 2010;28(11):580-88.
  37. Nešović K., Mišković‐Stanković V. A comprehensive review of the polymer‐based hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications. Polymer Engineering & Science. 2020;60(7):1393-419.
  38. Roy N., Gaur A., Jain A., Bhattacharya S., Rani V. Green synthesis of silver nanoparticles: An approach to overcome toxicity. Environmental Toxicology and Pharmacology. 2013;36(3):807-12.
  39. Christian P., Von der Kammer F., Baalousha M., Hofmann T. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology. 2008;17(5):326-43.
  40. Saleh T.A. Trends in the sample preparation and analysis of nanomaterials as environmental contaminants. Trends in Environmental Analytical Chemistry. 2020;28:e00101.
  41. Marambio-Jones C., Hoek E. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of nanoparticle research. 2010;12(5):1531-51.
  42. Rezvani E., Rafferty A., McGuinness C., Kennedy J. Adverse effects of nanosilver on human health and the environment. Acta Biomaterialia. 2019;94:145-59.
  43. Alcántara M., Morales M., Carnés J. Food allergy to caper (Capparis spinosa). Journal of investigational allergology & clinical immunology. 2013;23(1):67-69.
  44. Munir M., Ahmad M., Saeed M., Waseem A., Nizami A.-S., Sultana S., Zafar M., Rehan M., Srinivasan G.R., Ali A.M., Ali M.I. Biodiesel production from novel non-edible caper (Capparis spinosa L.) seeds oil employing Cu–Ni doped ZrO2 catalyst. Renewable and Sustainable Energy Reviews. 2021;138:110558.
  45. Cincotta F., Merlino M., Verzera A., Gugliandolo E., Condurso C. Innovative Process for Dried Caper (Capparis spinosa L.) Powder Production. Foods. 2022;11(23):3765.
  46. Kakaei M., Ur Rehman F. Cryopreservation Procedure Technique in Medicinal Plants. Agrotechniques in Industrial Crops. 2023;3(1):23-29.
  47. Noori A., Zebarjadi A. Introduction of Chia (Salvia hispanica L.) as an Important Oil-Medicinal Plant. Agrotechniques in Industrial Crops. 2022;2(3):104-16.
  48. Sithara R., Selvakumar P., Arun C., Anandan S., Sivashanmugam P. Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn(II) ions. Journal of Advanced Research. 2017;8(6):561-68.
  49. Li H., Deng Z., Wu T., Liu R., Loewen S., Tsao R. Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chemistry. 2012;130(4):928-36.
  50. Chang C.-C., Yang M.-H., Wen H.-M., Chern J.-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis. 2002;10(3):178-82.
  51. Mazarei F., Jooyandeh H., Noshad M., Hojjati M. Polysaccharide of caper (Capparis spinosa L.) Leaf: Extraction optimization, antioxidant potential and antimicrobial activity. International Journal of Biological Macromolecules. 2017;95:224-31.
  52. Boga C., Forlani L., Calienni R., Hindley T., Hochkoeppler A., Tozzi S., Zanna N. On the antibacterial activity of roots of Capparis spinosa L. Natural product research. 2011;25(4):417-21.
  53. Rajawat S., Qureshi M. Electrolytic deposition of silver nanoparticles under “Principles of Green Chemistry”. Arabian Journal for Science and Engineering. 2014;39(1):563-68.
  54. Saxena A., Tripathi R.M., Zafar F., Singh P. Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Materials Letters. 2012;67(1):91-94.
  55. Kalpana B., Prakash M. Antibacterial activity of Capparis sepiaria L.(Capparidaceae) leaves and fruits. International Journal of Current Microbiology and Applied Sciences. 2015;4(1):1007-12.
  56. moradi majd r., dehghanzadeh h., adavi z. Green synthesis and antibacterial effect of silver nanoparticles using Mentha piperita L and Mentha spicata L. extracts. [Orginal Article]. Journal Of Neyshabur University Of Medical Sciences. 2021;9(4):148-60.
  57. Maghsoudi A., Saeidi S. Study of antimicrobial effects of ethanol extract of caper plant from Sis-tan on antibiotic resistant Salmonella typhimurium. New Findings in Veterinary Microbiology. 2018;1(1):107-14.
  58. Mahboubi M., Mahboubi A. Antimicrobial activity of Capparis spinosa as its usages in traditional medicine. Herba Polonica. 2014;60(1):39-48.
  59. Gull T., Sultana B., Bhatti I.A., Jamil A. Antibacterial potential of Capparis spinosa and Capparis decidua extracts. International Journal of Agriculture and Biology. 2015;17(4):727–33
  60. Ibrahim O.M. Evaluation of anti-bacterial activity of Capparis spinosa (Al-Kabara) and Aloe vera extracts against Isolates Bacterial Skin Wound Infections in-vitro and in-vivo. Kufa Journal For Veterinary Medical Sciences. 2012;3(2):23-35.
  61. Azizian Shermeh O., Valizadeh J., Noroozifar M., Qasemi A. Investigating the Antimicrobial Activities of Silver Nanoparticles Biosynthesized by Aqueous Extract of Sambucus ebulus L. Journal of Ilam University of Medical Sciences. 2016;24(5):92-108.
  62. Ranjbar T., Sadeghian F., Goli H.R., Ahanjan M., Ebrahimzadeh M.A. Green Synthesis of Silver Nanoparticles with Allium paradoxum Extract and Evaluation of their Antibacterial Activities. Journal of Mazandaran University of Medical Sciences. 2020;29(182):1-11.
  63. Fatimah I., Hidayat H., Purwiandono G., Khoirunisa K., Zahra H.A., Audita R., Sagadevan S. Green Synthesis of Antibacterial Nanocomposite of Silver Nanoparticle-Doped Hydroxyapatite Utilizing Curcuma longa Leaf Extract and Land Snail (Achatina fulica) Shell Waste. Journal of Functional Biomaterials. 2022;13(2):84.
  64. Silva-Holguín P.N., Reyes-López S.Y. Synthesis of hydroxyapatite-Ag composite as antimicrobial agent. Dose-Response. 2020;18(3):1559325820951342.
  65. Loo Y.Y., Rukayadi Y., Nor-Khaizura M.-A.-R., Kuan C.H., Chieng B.W., Nishibuchi M., Radu S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Frontiers in microbiology. 2018;9:1555.
  66. Bilen S., Altunoglu Y.C., Ulu F., Biswas G. Innate immune and growth promoting responses to caper (Capparis spinosa) extract in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology. 2016;57:206-12.
  67. Mohanta Y.K., Mishra A.K., Nayak D., Patra B., Bratovcic A., Avula S.K., Mohanta T.K., Murugan K., Saravanan M. Exploring Dose-Dependent Cytotoxicity Profile of Gracilaria edulis-Mediated Green Synthesized Silver Nanoparticles against MDA-MB-231 Breast Carcinoma. Oxidative Medicine and Cellular Longevity. 2022;2022.
  68. Rautela A., Rani J. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. Journal of Analytical Science and Technology. 2019;10(1):1-10.
  69. Behravan M., Hossein Panahi A., Naghizadeh A., Ziaee M., Mahdavi R., Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International Journal of Biological Macromolecules. 2019;124:148-54.
  70. Yan S., Sun P., Lei J., Zhang Y., Xu L., Guo W., Wu Y., Morovvati H., Goorani S. Introducing a novel chemotherapeutic supplement prepared by silver nanoparticles green-formulated by Salvia officinalis leaf aqueous extract to treat the human oral squamous cell carcinoma. Inorganic Chemistry Communications. 2022;146:110161.
  71. Ahati P., Xu T., Chen L., Fang H. Biosynthesis, characterization and evaluation of anti-bone carcinoma, cytotoxicity, and antioxidant properties of gold nanoparticles mediated by Citrus reticulata seed aqueous extract: Introducing a novel chemotherapeutic drug. Inorganic Chemistry Communications. 2022;143:109791.
  72. javaheri hoshi f., abbassi daloii a., abdi a., ziaolhagh s.j. The effect of silver nanoparticle toxicity on the inflammatory markers of heart tissue following an anaerobic training course in male wistar rats. [Orginal Article]. Journal Of Neyshabur University Of Medical Sciences. 2019;7(3):131-42.