Solid Lipid Nanoparticles of Platycladus orientalis L. possessing 5-alpha Reductase Inhibiting Activity for Treating Hair Loss and Hirsutism

Document Type : Research Paper

Authors

1 Department of pharmaceutics, faculty of pharmacy, Zabol University of Medical Sciences, Zabol, Iran

2 Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran

4 Department of pharmacognosy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

5 Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

6 Department of Pharmaceutics, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

7 Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada 425409, India

Abstract

Hair loss and hirsutism have been major complaints due to increased concentrations of dihydrotestosterone. The plant Platycladus orientalis, with 5-alpha reductase inhibitor properties, has been used to treat these disorders. Its formulation with lipophilic carriers in SLN possesses high loading capacity and greater permeability to hair follicles. The present study aimed to determine the content of active ingredients in the extract of P. orientalis L. and to prepare and characterize the solid lipid nanoparticles (SLN) of Platycladus orientalis L. extract as a 5-alpha reductase inhibitor. The total methanolic extract was obtained following the maceration technique. This preparation was analyzed by HPLC using Quercetin and Cedrol as standard components. SLNs were prepared by high-shear homogenization and ultrasound. Four Glucire-GMS-Compritol-Precirol lipids and three poloxamer-tween80-Labrasol surfactants were further used in the formulations. Particle size, zeta potential, nanoparticle morphology, encapsulation percentage, crystal structure, physical stability, size, and zeta potential were studied 0, 3, and 6 months after preparation. Within 1-7 days after preparation, formulations containing GMS and compritol lipids became solid and jelly. Meanwhile, the formulations with Precirol as the lipid and Poloxamer as the surfactant with 0.3% extract exhibited desirable properties such as average particle size (192 nm), the encapsulation of the extract inside the nanoparticles was almost 71%, and good zeta potential. This formulation containing precirol as a lipid, poloxamer as a surfactant, and 0.3% plant extract exhibited greater 5-alpha reductase inhibitor activity, and it can be recommended to treat hair loss and hirsutism.

Keywords

Main Subjects


  1. Ilagan M.K.C.C., Paz-Pacheco E., Totesora D.Z., Clemente-Chua L.R., Jalique J.R.K. The modified Ferriman-Gallwey score and Hirsutism among Filipino women. Endocrinology and Metabolism. 2019;34(4):374-81.
  2. Etoga M.C.E., Ntoutoum A.C., Mekobe F.M., Boli A.O., Ntsama J.A.M., Moor V.A., Sobngwi E. Total Testosterone Concentration and Severity of Hirsutism in a Group of Hirsute Women of Yaoundé. Health Sciences and Disease. 2020;21(5).
  3. Ezeh U., Huang A., Landay M., Azziz R. Long-term response of hirsutism and other hyperandrogenic symptoms to combination therapy in polycystic ovary syndrome. Journal of Women's Health. 2018;27(7):892-902.
  4. Samadi Z., Bambaeichi E., Valiani M., Shahshahan Z. Evaluation of changes in levels of hyperandrogenism, hirsutism and menstrual regulation after a period of aquatic high intensity interval training in women with polycystic ovary syndrome. International journal of preventive medicine. 2019;10:187.
  5. Azziz R., Sanchez L., Knochenhauer E., Moran C., Lazenby J., Stephens K., Taylor K., Boots L. Androgen excess in women: experience with over 1000 consecutive patients. The Journal of Clinical Endocrinology & Metabolism. 2004;89(2):453-62.
  6. Mody A., Shinkai K. Addressing important knowledge gaps about the disease burden of hirsutism. International Journal of Women's Dermatology. 2021;7(3):243-45.
  7. Turker S., Cilbir E., Karacin C., Altinbas M. Hypertrichosis, trichomegaly, and androgenic alopecia related to cetuximab treatment. Journal of Cancer Research and Therapeutics. 2020;16(3):690-92.
  8. Kaliyadan F., Nambiar A., Vijayaraghavan S. Androgenetic alopecia: an update. Indian journal of dermatology, venereology and leprology. 2013;79(5):613-25.
  9. Shivakumar S., Kassir M., Rudnicka L., Galadari H., Grabbe S., Goldust M. Hair Transplantation Surgery Versus Other Modalities of Treatment in Androgenetic Alopecia: A Narrative Review. Cosmetics. 2021;8(1):25.
  10. Ovcharenko Y., Salyenkova O. Modern concept of the etiology and pathogenesis of androgenetic alopecia. The Journal of VN Karazin Kharkiv National University, series" Medicine". 2021;(42).
  11. TANG S., FANG H. Pathogenesis of androgenetic alopecia. Chinese Journal of Dermatology. 2019;12:208-10.
  12. Lolli F., Pallotti F., Rossi A., Fortuna M.C., Caro G., Lenzi A., Sansone A., Lombardo F. Androgenetic alopecia: a review. Endocrine. 2017;57(1):9-17.
  13. Grandi G., Del Savio M.C., Facchinetti F. The paradigm of norgestimate: a third-generation testosterone-derivative progestin with a peripheral anti-androgenic activity and the lowest risk of venous thromboembolism. Expert Review of Clinical Pharmacology. 2021;14(2):211-24.
  14. Louw-du Toit R., Perkins M.S., Hapgood J.P., Africander D. Comparing the androgenic and estrogenic properties of progestins used in contraception and hormone therapy. Biochemical and Biophysical Research Communications. 2017;491(1):140-46.
  15. Azarchi S., Bienenfeld A., Sicco K.L., Marchbein S., Shapiro J., Nagler A.R. Androgens in women: Hormone-modulating therapies for skin disease. Journal of the American Academy of Dermatology. 2019;80(6):1509-21.
  16. Suchonwanit P., Iamsumang W., Leerunyakul K. Topical finasteride for the treatment of male androgenetic alopecia and female pattern hair loss: a review of the current literature. Journal of Dermatological Treatment. 2020;2020(Jun ):1-6.
  17. Kakadia P.G., Conway B.R. Solid lipid nanoparticles: a potential approach for dermal drug delivery. American Journal of Pharmacological Sciences. 2014;2(5A):1-21.
  18. Sarangi B., Jana U., Palei N.N., Mohanta G.P., Manna P.K. Solid lipid nanoparticles: a potential approach for drug delivery system. Nanoscience & Nanotechnology-Asia. 2019;9(2):142-56.
  19. Shaafi B., Kahrizi D., Zebarjadi A., Azadi P. The Effects of Nanosilver on Bacterial Contamination and Increase Durability Cultivars of Rosa hybrida L. Through of Stenting Method. Cellular and Molecular Biology. 2022;68(3):179-88.
  20. Fujita R., Liu J., Shimizu K., Konishi F., Noda K., Kumamoto S., Ueda C., Tajiri H., Kaneko S., Suimi Y. Anti-androgenic activities of Ganoderma lucidum. Journal of Ethnopharmacology. 2005;102(1):107-12.
  21. Grant P., Ramasamy S. An update on plant derived anti-androgens. International journal of endocrinology and metabolism. 2012;10(2):497-502.
  22. Srivilai J., Minale G., Scholfield C.N., Ingkaninan K. Discovery of natural steroid 5 alpha-reductase inhibitors. Assay and drug development technologies. 2019;17(2):44-57.
  23. Asili J., Mosallaei N., Shaterzadeh A., Malaekeh-Nikouei B. Preparation and characterization of liposomes containing methanol extract of aerial parts of Platycladus orientalis (L.) Franco. Avicenna journal of phytomedicine. 2011;2(1):17-23.
  24. Ren J., Liao L., Shang S., Zheng Y., Sha W., Yuan E. Purification, characterization, and bioactivities of polyphenols from Platycladus orientalis (L.) Franco. Journal of food science. 2019;84(3):667-77.
  25. Mohammadhosseini M., Akbarzadeh A., Hashemi-Moghaddam H., Bahmanpour H., Shafaghat A., Lotfi S. The Relationship Between Chemical Composition of the Essential Oils of Platycladus orientalis (L.) Franco and Soils Contamination in National Oil Company of Shahrood, Iran. Journal of Essential Oil Bearing Plants. 2017;20(5):1209-25.
  26. Zhu J.X., Wang Y., Kong L.D., Yang C., Zhang X. Effects of Biota orientalis extract and its flavonoid constituents, quercetin and rutin on serum uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver. Journal of Ethnopharmacology. 2004;93(1):133-40.
  27. Jain N., Sharma M. Ethanobotany, phytochemical and pharmacological aspects of Thuja orientalis: A review. Int. J. Pure App. Biosci. 2017;5(3):73-83.
  28. Jasuja N.D., Sharma S., Choudhary J., Joshi S.C. Essential oil and important activities of Thuja orientalis and Thuja occidentalis. Journal of Essential Oil Bearing Plants. 2015;18(4):931-49.
  29. Pourzarghan V., Fazeli-Nasab B. The use of Robinia pseudoacacia L fruit extract as a green corrosion inhibitor in the protection of copper-based objects. Herit. Sci. 2021;9(1):1-14.
  30. Khodadadi S., Mahdinezhad N., Fazeli-Nasab B., Heidari M.J., Fakheri B., Miri A. Investigating the Possibility of Green Synthesis of Silver Nanoparticles Using Vaccinium arctostaphlyos Extract and Evaluating Its Antibacterial Properties. Biomed Res. Int. 2021;2021:Article ID: 5572252.
  31. Valizadeh M., Beigomi M., Fazeli-Nasab B. Antibacterial and Anti biofilm effects of ethanol and aceton leaf extract of Momordica charantia and Tecomella undulata against Acinetobacter baumannii. Int. J. Adv. Biol. Biomed. Res. 2020;8(4):403-18.
  32. Fischer M., Scholz-Böttcher B.M. Microplastics analysis in environmental samples–recent pyrolysis-gas chromatography-mass spectrometry method improvements to increase the reliability of mass-related data. Analytical methods. 2019;11(18):2489-97.
  33. Mäder K., Mehnert W. Solid lipid nanoparticles-concepts, procedures, and physicochemical aspects. Boca Raton, London, New York, Washington, D.C.: CRC PR ESS. 2005; 159 Pages,
  34. Wissing S., Müller R. Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. Journal of Controlled Release. 2002;81(3):225-33.
  35. Jores K., Mehnert W., Drechsler M., Bunjes H., Johann C., Mäder K. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. Journal of Controlled Release. 2004;95(2):217-27.
  36. Daneshmand S., Jaafari M.R., Movaffagh J., Malaekeh-Nikouei B., Iranshahi M., Moghaddam A.S., Najaran Z.T., Golmohammadzadeh S. Preparation, characterization, and optimization of auraptene-loaded solid lipid nanoparticles as a natural anti-inflammatory agent: In vivo and in vitro evaluations. Colloids and Surfaces B: Biointerfaces. 2018;164:332-39.
  37. Sarhadi S., Gholizadeh M., Moghadasian T., Golmohammadzadeh S. Moisturizing effects of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) using deionized and magnetized water by in vivo and in vitro methods. Iranian journal of basic medical sciences. 2020;23(3):337.
  38. Hamdani J., Moës A.J., Amighi K. Physical and thermal characterisation of Precirol® and Compritol® as lipophilic glycerides used for the preparation of controlled-release matrix pellets. International journal of pharmaceutics. 2003;260(1):47-57.
  39. Qazi F., Shoaib M.H., Yousuf R.I., Nasiri M.I., Ahmed K., Ahmad M. Lipids bearing extruded-spheronized pellets for extended release of poorly soluble antiemetic agent—Meclizine HCl. Lipids in health and disease. 2017;16(1):1-16.
  40. Wong H.L., Bendayan R., Rauth A.M., Li Y., Wu X.Y. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Advanced drug delivery reviews. 2007;59(6):491-504.
  41. Smith T., Affram K., Nottingham E.L., Han B., Amissah F., Krishnan S., Trevino J., Agyare E. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Scientific reports. 2020;10(1):1-14.
  42. Wissing S., Kayser O., Müller R. Solid lipid nanoparticles for parenteral drug delivery. Advanced drug delivery reviews. 2004;56(9):1257-72.
  43. Basha S.K., Dhandayuthabani R., Muzammil M.S., Kumari V.S. Solid lipid nanoparticles for oral drug delivery. Materials Today: Proceedings. 2021;36:313-24.
  44. Sotoudeh E., Amiri-Behrosi A., Bahadori R., Habibi H., Morammazi S. Nonspecific immune responses, activity of digestive enzymes and body composition of rainbow trout (Oncorhynchus mykiss) fed diets containing manganese sulfate nanoparticles. Journal of animal Research(Iranian Journal of Biology). 2019;32(4):299-314.
  45. Naseri M., Golmohamadzadeh S., Arouiee H., Jaafari M.R., Nemati S.H. Preparation and comparison of various formulations of solid lipid nanoparticles (SLNs) containing essential oil of Zataria multiflora. Journal of Horticulture and Postharvest Research. 2020;3(1-March 2020):73-84.
  46. Kumar H., Rajpoot D., Kumar A., Sharma S., Kumar A. Solid Lipid Nanoparticles: A Strategy to Improve Oral Delivery of the Biopharmaceutics classification system (BCS) Class II Drugs. International Journal of Pharmaceutical & Biological Archives. 2018;9(4):204-15.
  47. Wosicka H., Cal K. Targeting to the hair follicles: current status and potential. Journal of dermatological science. 2010;57(2):83-89.
  48. Chamcheu J.C., Roy T., Uddin M.B., Banang-Mbeumi S., Chamcheu R.-C.N., Walker A.L., Liu Y.-Y., Huang S. Role and therapeutic targeting of the PI3K/Akt/mTOR signaling pathway in skin cancer: a review of current status and future trends on natural and synthetic agents therapy. Cells. 2019;8(8):803.
  49. Garcês A., Amaral M., Lobo J.S., Silva A.C. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. European Journal of Pharmaceutical Sciences. 2018;112:159-67.
  50. Teeranachaideekul V., Müller R.H., Junyaprasert V.B. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)—effects of formulation parameters on physicochemical stability. International journal of pharmaceutics. 2007;340(1-2):198-206.
  51. Lademann J., Richter H., Teichmann A., Otberg N., Blume-Peytavi U., Luengo J., Weiss B., Schaefer U.F., Lehr C.-M., Wepf R. Nanoparticles–an efficient carrier for drug delivery into the hair follicles. European Journal of Pharmaceutics and Biopharmaceutics. 2007;66(2):159-64.
  52. Newton A.M., Kaur S. Solid lipid nanoparticles for skin and drug delivery: Methods of preparation and characterization techniques and applications Nanoarchitectonics in Biomedicine (pp. 295-334): Elsevier. 2019,
  53. da Silva Santos V., Ribeiro A.P.B., Santana M.H.A. Solid lipid nanoparticles as carriers for lipophilic compounds for applications in foods. Food Research International. 2019;122:610-26.
  54. Kumar R., Singh A., Garg N. Acoustic cavitation assisted hot melt mixing technique for solid lipid nanoparticles formulation, characterization, and controlled delivery of poorly water soluble drugs. Journal of Drug Delivery Science and Technology. 2019;54:101277.
  55. Souto E. SLN and NLC for topical delivery of antifungals. Dissertation, Biologie, Chemie, Pharmazie. 2005
  56. Souto E.B., Baldim I., Oliveira W.P., Rao R., Yadav N., Gama F.M., Mahant S. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert opinion on drug delivery. 2020;17(3):357-77.
  57. Üner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Die pharmazie-an international journal of pharmaceutical sciences. 2006;61(5):375-86.
  58. Wei W., Lu X., Wang Z., Pérez B., Liu J., Wu C., Dong M., Feng F., Mu H., Guo Z. Single-component solid lipid nanocarriers prepared with ultra-long chain amphiphilic lipids. Journal of colloid and interface science. 2017;505:392-401.
  59. Sutthanut K., Lu X., Jay M., Sripanidkulchai B. Solid lipid nanoparticles for topical administration of Kaempferia parviflora extracts. Journal of biomedical nanotechnology. 2009;5(2):224-32.
  60. Madureira A.R., Nunes S., Campos D.A., Fernandes J.C., Marques C., Zuzarte M., Gullón B., Rodríguez-Alcalá L.M., Calhau C., Sarmento B. Safety profile of solid lipid nanoparticles loaded with rosmarinic acid for oral use: In vitro and animal approaches. International journal of nanomedicine. 2016;11:3621.
  61. Shan C.-x., Guo S.-c., Yu S., Shan M.-q., Li S.F.Y., Chai C., Cui X.-b., Zhang L., Ding A.-w., Wu Q.-n. Simultaneous Determination of Quercitrin, Afzelin, Amentoflavone, Hinokiflavone in Rat Plasma by UFLC–MS-MS and Its Application to the Pharmacokinetics of Platycladus orientalis Leaves Extract. Journal of chromatographic science. 2018;56(10):895-902.
  62. Zhang Y., Han L., Chen S.-S., Guan J., Qu F.-Z., Zhao Y.-Q. Hair growth promoting activity of cedrol isolated from the leaves of Platycladus orientalis. Biomedicine & Pharmacotherapy. 2016;83:641-47.
  63. Alavi M., Hamblin M.R. Antibacterial silver nanoparticles: effects on bacterial nucleic acids. Cell. Mol. Biomed. Rep. 2023;3(1):35-41.
  64. Alavi M., Hamblin M.R., Mozafari M.R., Rose Alencar de Menezes I., Douglas Melo Coutinho H. Surface modification of SiO2 nanoparticles for bacterial decontaminations of blood products. Cell. Mol. Biomed. Rep. 2022;2(2):87-98.
  65. Alavi M., Rai M. Antisense RNA, the modified CRISPR-Cas9, and metal/metal oxide nanoparticles to inactivate pathogenic bacteria. Cell. Mol. Biomed. Rep. 2021;1(2):52-59.
  66. Alavi M., Rai M., Martinez F., Kahrizi D., Khan H., Rose Alencar de Menezes I., Douglas Melo Coutinho H., Costa J.G.M. The efficiency of metal, metal oxide, and metalloid nanoparticles against cancer cells and bacterial pathogens: different mechanisms of action. Cell. Mol. Biomed. Rep. 2022;2(1):10-21.
  67. Thakur P., Thakur S., Kumari P., Shandilya M., Sharma S., Poczai P., Alarfaj A.A., Sayyed R. Nano-insecticide: synthesis, characterization, and evaluation of insecticidal activity of ZnO NPs against Spodoptera litura and Macrosiphum euphorbiae. Applied Nanoscience. 2022;2022:1-16.
  68. Akhtar N., Ilyas N., Meraj T.A., Pour-Aboughadareh A., Sayyed R.Z., Mashwani Z.-u.-R., Poczai P. Improvement of Plant Responses by Nanobiofertilizer: A Step towards Sustainable Agriculture. Nanomaterials. 2022;12(6):965.
  69. Sadiq M.B., Khan M.R., Sayyed R.Z. Biosurfatnats: Production and applications in Bioremediation/ Reclamation. Vol III: CRC Press-Taylor & Francis Group, USA, 2022, pp 158-168 2022;
  70. Rasouli H., Popović-Djordjević J., Sayyed R.Z., Zarayneh S., Jafari M., Fazeli-Nasab B. Nanoparticles: A New Threat to Crop Plants and Soil Rhizobia? In Hayat S Pichtel J Faizan M, Fariduddin Q (Eds.), Sustainable Agriculture Reviews 41: Nanotechnology for Plant Growth and Development (pp. 201-14). Cham: Springer International Publishing. 2020,
  71. Faridvand S., Amirnia R., Tajbakhsh M., El Enshasy H.A., Sayyed R. The effect of foliar application of magnetic water and nano-fertilizers on phytochemical and yield characteristics of fennel. Horticulturae. 2021;7(11):475.
  72. Kapadia C., Lokhandwala F., Patel N., Elesawy B.H., Sayyed R.Z., Alhazmi A., Haque S., Datta R. Nanoparticles combined with cefixime as an effective synergistic strategy against Salmonella enterica typhi. Saudi Journal of Biological Sciences. 2021;28(8):4164-72.
  73. Jakinala P., Lingampally N., Hameeda B., Sayyed R., Khan M Y., Elsayed E.A., El Enshasy H. Silver nanoparticles from insect wing extract: Biosynthesis and evaluation for antioxidant and antimicrobial potential. PloS one. 2021;16(3):e0241729.