Evaluation the Effects of shade and Humic Acid on the Eco-Physiological Traits of Roselle (Hibiscus sabdariffa L.) under Different Irrigation Regimes

Document Type : Research Paper

Authors

Department of Agronomy, Shahed University, Tehran, Iran

Abstract

Roselle (Hibiscus sabdariffa L.) is important due to its versatility and multiple uses, ranging from food and beverages to traditional medicine and cosmetics. The field experiments were conducted at the research farm of Shahed University, and the Agricultural Jihad Department of Abyek City Research Station during 2017-2020. Roselle grew under 0 and 50% shade, three irrigation regimes (2, 4 and 6 hours per week) and 4 levels of humic acid (0, 3, 6, and 12 kg/ha) through a split-split experiment based on a randomized complete blocks design with 3 replications. Measured parameters were plant height, stem diameter, number of flowering branches, sepal and capsule weight, number of fruits per plant, 1000-seed weight, plant dry weight, harvest index, fresh fruit length and diameter, inflorescence length, seed biological yield, flower protein (%), essential oil (%), anthocyanin (%), seed oil (%), and relative leaf water content. Results showed that shade treatments affected growth of roselle and significant differences in the most of above parameters were occurred.  The highest means of sepal, seed and biological yields were observed in combination of unshade with 12 kg/ha humic acid application by 836, 1817 and 25710 kg/ha respectively. Results indicated that, 2 and 4 hours irrigation reduced seed yield 44 and 49% and biological yield 45 and 48% respectively. Shading caused a notable decline of essential oil (44%), anthocyanin (71%), protein (30.5%), and oil content (25%) compared to combinations of unshade and humic acid application treatment. In conclusion, this experiment demonstrated that shading and water deficiency had decreased the morphological traits and biological yield of the roselle plant, and applying humic acid in these conditions mitigated the adverse impacts of the stressors.

Keywords

Main Subjects


  1. El Naim A.M., Khaliefa E.H., Ibrahim K.H., Ismaeil F.M. Zaied M.M.B. Growth and Yield of Roselle (Hibiscus sabdariffa L) as Influenced by Plant Population in Arid Tropic of Sudan under Rain-fed. Int. J. Agric. For. 2012;2(3):88-91.
  2. Wagner G.J. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiol. 1979;64:88-93.
  3. Da-Costa-Rocha I., Bonnlaender B., Sievers H., Pischel I., Heinrich M. Hibiscus sabdariffa L.–A phytochemical and pharmacological review. Food Chem. 2014;165:424-443.
  4. Izquierdo-Vega J.A., Arteaga-Badillo D.A., Sánchez-Gutiérrez M., Morales-González J.A., Vargas-Mendoza N., Gómez-Aldapa C.A., Castro-Rosas J., Delgado-Olivares L., Madrigal-Bujaidar E., Madrigal-Santillán E. Organic acids from roselle (Hibiscus sabdariffa L.)—A brief review of its pharmacological effects. Biomedicine. 2020;8:100.
  5. Tindall H.D. Vegetables in the Tropics. Macmillan Press Ltd., London.1983.
  6. Meftahizadeh H., Taghi Ebadi M.,   Baath G.S., Ghorbanpour M. Variation of morphological and phytochemical traits in Roselle (Hibiscus sabdariffa L.) genotypes under different planting dates. Acta Ecol. Sin. 2022;42(6):616-623.
  7. Javadzadeh S.M. Study of phenology process of Roselle (Hibiscus sabdariffa L.) in South-east Iran. Int. J. Adv. Res. Biol. Sci. 2018;5(3):145-156.
  8. Sepahrom A., Moosavi, S.G. The effect of irrigation and nitrogen levels on morphological traits, yield and yield components of roselle (Hibiscus sabdariffa L.). Iranian J. Med. Aro. Plants. Res. 2016;32(77):436-449.
  9. Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006;11(1):15-9.
  10. Rahbarian P., Fsharmanesh A., Behzadi M. Effect of drought Stress as water deficit and Plant density on yield roselle (Hibiscus sabdariffa) in Jiroft region. New Finding in Agri. 2011;5 (3):249-257.
  11. Nykiel M., Małgorzata M., Gietler Fidler J., Prabucka B., Labudda L. Abiotic Stress Signaling and Responses in Plants. Plants. 2023;12(19):3405.
  12. Applequist W.L., Brinckmann J.A., Cunningham A.B., Hart R.E., Heinrich M., Katerere D.R., Van Andel T. Scientists warning on climate change and medicinal plants. Planta Med. 2020;86:10-18.
  13. Rezazadeh A., Harkess R.L., Telmadarrehei T. The Effect of Light Intensity and Temperature on Flowering and Morphology of Potted Red Firespike. Horticulture. 2018;4(36):1-7.
  14. De Moor J. Postapocalyptic narratives in climate activism: their place and impact in five European cities. Environ. Politics. 2022;31:927-948.
  15. Zahra W., Rai S.N., Birla H., Singh S.S., Rathore A.S., Dilnashin H., Keswani C., Singh S.P. Economic importance of medicinal plants in Asian countries. Bioeconomy for sustainable development. 2020.
  16. Ahmed Y.M., Shalaby E.A., Shanan N.T. The use of organic and inorganic cultures in improving vegetative growth, yield characters and antioxidant activity of roselle plants (Hibiscus sabdariffa L.). Afr. J. Biotechnol. 2011;10:1988-1996.
  17. Zhang D., Armitage A.M., Affolter J.M., Dirr M.A. Environmental control of flowering and growth of Achillea millefolium L. ‘Summer Pastels’. Hort. Sci. 1996;31:364-365.
  18. Wang X., Chen G., Du S., Wu H., Fu R., Yu X. Intensity Influence on Growth and Photosynthetic Characteristics of Horsfieldia hainanensis. Front. Ecol. Evol. 2021;9:1-14.
  19. Flores M., Urrestarazu M., Amorós A., Escalona V. High intensity and red enriched LED lights increased the growth of lettuce and endive. Ital. J. Agron. 2022;17:1915.
  20. Lu X., Xu N., Chen Y., Li Y., Gan X. Effects of light intensity and ground cover on seedling regeneration of Tetracentron sinense oliv. J. Plant Growth Regul. 2020;40:736-748.
  21. Armitage A.M. Shade affects yield and stem length of field-grown cut flower species. Hort. Sci. 1991;26:1174-1176.
  22. El-Gizawy A.M., Gomaa H.M., El-Habbasha K.M., Mohamed S.S. Effect of different shading levels on tomato plants 1. growth, flowering and chemical composition. Acta Hortic. 1993;323:341-348.
  23. Ayuko U., Tadahiko M., Amane M. Effects of temperature on photosynthesis and plant growth in the assimilation shoots of a rose. Soil Sci. Plant Nutr. 2008;54:253-258.
  24. Bepetel M., Lakso A.N. Differential effects of shade on early-season fruit and shoot growth rates in empire apple. Hort. Sci. 1998;33:823-825.
  25. Kruse J., Hopmans P., Adams, M.A. Temperature responses are a window to the physiology of dark respiration: differences between CO2 release and O2 reduction shed light on energy conservation. Plant Cell Environ. 2008;31:901-914.
  26. Ishida K. Influence of respiration rate and metabolic substances on nodal position of first flower bud of eggplant seedings. J. Japanese Soc. Hortic. Sci. 1989;58:657-660.
  27. Liu X., Fan Y., Long J., Wei R., Kjelgren R., Gong C. Effects of soil water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings. J. Environ. Sci. 2013;25:585-595.
  28. Muslihatinn W., Daesusi R. Influence of Photoperiod on The Relative Growth Rate of Hibiscus sabdariffa L. J. Sci. Technol. 2014;25(1):18-22.
  29. Mataa M., Makungu B., Siziya I. Shading Effects of Intercropping Roselle (Hibiscus sabdariffa) Genotypes on Plant Developments, Assimilate Partitioning and Leaf Nutrient Content. Int. j. agric. res. innov. technol. 2018;8(1):7-13.
  30. Hazrati S., Tahmasebi-Sarvestani Z., Nicola S., Beyraghdar Kashkooli A., Habibzadeh F., Mohammadi H., Mokhtassi-Bidgoli A. Effect of Light and Water Deficiency on Growth and Concentration of Various Primary and Secondary Metabolites of Aloe vera L. J. Agr. Sci. Tech. 2020;22(5):1343-1358.
  31. Matuszak-Slamani R., Bejger R., Włodarczyk M., Kulpa D., Sienkiewicz M., Gołębiowska D., Skórska E., Ukalska-Jaruga A. Effect of humic acids on soybean seedling growth under polyethylene-glycol-6000-induced drought stress. Agron. 2022;12(5):1109.
  32. Waqas M., Ahmad B., Arif M., Munsif F., Khan A., Amin M., Kang S.M., Kim Y.H., Lee I.J. Evaluation of Humic Acid Application Methods for Yield and Yield Components of Mungbean. Am. J. Plant Sci. 2014;5:2269-2276.
  33. El-Hashash E.F., AbouEl-Enin M.M., AbdEl-Mageed T.A., Attia M.A.E.H., El-Saadony M.T., El-Tarabily K.A., Shaaban A. Bread wheat productivity in response to humic acid supply and supplementary irrigation mode in three Northwestern coastal sites of Egypt. Agron. 2022;12:1499.
  34. Chen Q., Qu Z., Ma G., Wang W., Dai J., Zhang M., Wei Z., Liu Z. Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions. Agric. Water Manag. 2022; 263:107447.
  35. Dhanda, S., Sethi, G. Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica. 1998;104:39-47.
  36. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248-254.
  37. British Pharmacopoeia. Published on the Recommendation of the Commission on Human Medicines Pursuant to the Medicines Act 1968 and Notified in Draft to the European Commission in Accordance with Directive 98/34/EEC. 2012;2:1127.
  38. Besharati J., Shirmardi M., Meftahizadeh H., Ardakani M.D., Ghorbanpour M. Changes in growth and quality performance of Roselle (Hibiscus sabdariffa L.) in response to soil amendments with hydrogel and compost under drought stress. S. Afr. J. Bot. 2022;145:334-347.
  39. SAS Institute. JMP statistics and graphics guide. SAS Institute Inc., Cary, NC. 2002.
  40. Fallahi H.R., Ghorbany M., Samadzadeh A., Aghhavani-Shajari M., Asadian A.H. Influence of arbuscular mycorrhizal inoculation and humic acid application on growth and yield of Roselle (Hibiscus sabdariffa L.) and its mycorrhizal colonization index under deficit irrigation. Int. j. hortic. sci. technol. 2016;3:113-128.
  41. Sanjari M., Siroosmehr A., Fakheri B. The effects of drought stress and humic acid on some physiological characteristics of Roselle (Hibiscus sabdariffa). J. Crop Improv. 2015;17(2):403-414.
  42. Fathi A., Bahamin S. The effect of irrigation levels and foliar application (zinc, humic acid and salicylic acid) on growth characteristics, yield and yield components of roselle (Hibiscus sabdariffa L.). Environ. Stresses in Crop Sci. 2018;11:661-674.
  43. Fallahi H.R., Ghorbani M., Aghhavani-Shajari M., Samadzadeh A., Khayyat M., Maraki Z., Asadian A.H. Effects of irrigation management, mycorrhizal inoculation and humic acid application on color characteristics of Roselle (Hibiscus sabdariffa L.) dried sepals. Environ. Stresses in Crop Sci. 2017;10:571-582.
  44. Koocheki A., Fallahi H., Amiri M.B., Ehyaei H. Effects of humic acid application and mother corm weight on yield and growth of saffron (Crocus sativus L.). J. agroecol. 2014;7:425-442.
  45. Yakhin O.I., Lubyanov A.A, Yakhin IA, Brown P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2017;7:238366.