Enhancing Lavender Germination and Growth: An Assessment of Biofertilizer Seed Priming on Physiological and Biochemical Attributes Under Water Stress

Document Type : Research Paper

Authors

1 Department of Agriculture, Shirvan Branch, Islamic Azad University, North Khorasan, Iran

2 Khorasan Razavi Agricultural and Natural Resources Research and Education Center, Iran

Abstract

Enhancing herbal plant germination through biological priming is crucial under water stress conditions. This study investigated the effects of different biopriming techniques on the physiological and biochemical attributes of two lavender genotypes (English and French) under water stress induced by PEG-6000 (-1, -0.5, -0.25, and 0 MPa) during 2022. Results indicated that the English genotype outperformed the French genotype regarding germination parameters and photosynthetic pigment content, while the French genotype exhibited higher activity levels of antioxidant enzymes. Under well-watered conditions, hydropriming (HP) and Azetobacter + Pseudomonas (AzPs) treatments led to the most excellent germination percentages and tallest seedlings in the English genotype. Hydropriming and AzPs treatments resulted in the most elevated levels of chlorophyll a, b, and total. Additionally, when subjected to water stress, the AzPs treatment showed the highest chlorophyll b and total. Proline content was found to vary between genotypes and treatments, with the highest mean associated with the English genotype and seed priming with AzPs + Arbuscular mycorrhizal fungi (AMF) under the highest level of water stress. The study suggests that bio-priming with biofertilizers and hydropriming can improve germination parameters and physiological characteristics, with individual biofertilizers being more effective than their combined application. Moreover, the English genotype exhibited superior features to the French genotype, and using of AMF and AzPs alone can enhance seed germination and improve the biochemical characteristics of lavender under water stress conditions.

Keywords

Main Subjects


  1. Uritu C.M., Mihai C.T., Stanciu G.D., Dodi G., Alexa Stratulat T., Luca A., Leon Constantin M.M., Stefanescu R., Bild V., Melnic S. Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Res. Management. 2018; 8:1-44.
  2. Özsevinç A., Alkan C. Polyurethane shell medicinal lavender release microcapsules for textile materials: An environmentally friendly preparation. Industrial Crops and Products. 2023; 192:116131.
  3. Pokajewicz K., Białoń M., Svydenko L., Fedin R., Hudz N. Chemical composition of the essential oil of the new cultivars of Lavandula angustifolia Mill. Bred in Ukraine. Molecules. 2021; 26:5681.
  4. Radu D., Alexe P., Stănciuc N. Overview on the potential role of phytochemicals from lavender as functional ingredients. The Annals of the University Dunarea de Jos of Galati. Fascicle VI-Food Technology. 2020; 44:173-188.
  5. Peçanha D.A., Freitas M.S.M., Cunha J.M., Vieira M.E., de Jesus A.C. Mineral composition, biomass and essential oil yield of french lavender grown under two sources of increasing potassium fertilization. J. Plant Nutrition. 2023; 46:344-355.
  6. Lis-Balchin M. Lavender.' in, Handbook of herbs and Spices (Elsevier). 2012;85-87.
  7. Naiel B., Fawzy M., Halmy M.W.A., Mahmoud A.E.D. Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Scientific Reports. 2022; 12:20370.
  8. Hakimi Y., Fatahi R., Shokrpour M., Naghavi M.R. Investigation of germination characteristics of four medicinal plants seed (lavender, hyssop, black cumin and Scrophularia) under interaction between salinity stress and temperature levels. J. Genetic Resources. 2022; 8:35-45.
  9. Aghighi Shahverdi M., Omidi H., Tabatabaei S.J. Effect of nutri-priming on germination indices and physiological characteristics of stevia seedling under salinity stress. J. Seed Sci. 2017; 39:353-362.
  10. Devika O.S., Singh S., Sarkar D., Barnwal P., Suman J., Rakshit A. Seed priming: a potential supplement in integrated resource management under fragile intensive ecosystems. Frontiers in Sustainable Food Systems. 2021; 5:654001.
  11. Hamidi M., Moghadam H.T., Nasri M., Kasraie P., Larijani H. The effect of ascorbic acid and bio fertilizers on basil under drought stress. Brazilian J. Biology. 2022; 84:1-7.
  12. Seleiman M.F., Al-Suhaibani N., Ali N., Akmal M., Alotaibi M., Refay Y., Dindaroglu T., Abdul-Wajid H.H., Battaglia M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 2021; 10:259.
  13. Mahmood A., Turgay O.C., Farooq M., Hayat R. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiology Ecology. 2016; 92:101-112.
  14. Hasanzadehghyrt Tapeh A., Heydarzadeh S., Ghaderi N. Evaluation of quantitative and qualitative characteristics of Calendula officinalis L. in different treatments of seed priming and biofertilizer. J. Crop Production. 2021; 14:123-139.
  15. Hatami M., Khanizadeh P., Bovand F., Aghaee A. Silicon nanoparticle-mediated seed priming and Pseudomonas spp. inoculation augment growth, physiology and antioxidant metabolic status in Melissa officinalis L. plants. Indust. Crops and Products. 2021; 162:113238.
  16. Riaz U., Mehdi S.M., Iqbal S., Khalid H.I., Qadir A.A., Anum W., Ahmad M., Murtaza G. Bio-fertilizers: eco-friendly approach for plant and soil environment. Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation. 2020; 1:189-213.
  17. Kanjevac M., Bojović B., Ćirić A., Stanković M., Jakovljević D. Seed priming improves biochemical and physiological performance of wheat seedlings under low-temperature conditions. Agricu. 2022; 13:2-8.
  18. Zhang H., Zhang X., Gao G., Ali I., Wu X., Tang M., Chen L., Jiang L., Liang T. Effects of various seed priming on morphological, physiological, and biochemical traits of rice under chilling stress. Frontiers in Plant Sci. 2023; 12:14-19.
  19. Borthakur P., Bhattacharyya R., Das U. Biochar in organic farming. Organic Farming: New Advances Towards Sustainable Agric. Systems. 2019; 1: 109-134.
  20. Zhang K., Khan Z., Yu Q., Qu Z., Liu J., Luo T., Zhu K., Bi J., Hu L., Luo L. Biochar coating is a sustainable and economical approach to promote seed coating technology, seed germination, plant performance, and soil health. Plants. 2022; 11:2864.
  21. Zhang P., Yang F., Zhang H., Liu L., Liu X., Chen J., Wang X., Wang Y., Li C. Beneficial effects of biochar-based organic fertilizer on nitrogen assimilation, antioxidant capacities, and photosynthesis of sugar beet (Beta vulgaris L.) under saline-alkaline stress. Agronomy. 2020b; 10:1562.
  22. Brtnicky M., Datta R., Holatko J., Bielska L., Gusiatin Z.M., Kucerik J., Hammerschmiedt T., Danish S., Radziemska M., Mravcova L. A critical review of the possible adverse effects of biochar in the soil environment. Sci of The Total Environ. 2021; 796:148756.
  23. Zhang K., Wang Y., Mao J., Chen B. Effects of biochar nanoparticles on seed germination and seedling growth. Environ. Pollut. 2020a; 256:113409.
  24. Seyed Sharifi R., Khavazi K. Effect of seed inoculation with plant growth promoting rhizobacteria (PGPR) on germination components and seedling growth of corn (Zea mays L.). J. Agroecology. 2011; 3:506-513.
  25. Afkari A. The effect of seed inoculation with arbuscular mycorrhizal fungi on some chemical characteristics and seed germination of corn (SC704) under drought stress. Iran. J. Seed Sci. Technol. 2019; 8:253-264.
  26. Michel B.E., Kaufmann M.R. The osmotic potential of polyethylene glycol 6000. Plant Physiology. 1973; 51:914-916.
  27. Maguire J.D. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Sci. 1962; 2:176-177.
  28. Liopa-Tsakalidi A., Kaspiris G., Salahas G., Barouchas P. Effect of salicylic acid (SA) and gibberellic acid (GA3) pre-soaking on seed germination of stevia (Stevia rebaudiana) under salt stress. J. Med. Plants Res. 2012; 6:416-423.
  29. Gorzi A., Omidi H., Bostani A. Morpho-physiological responses of Stevia (Stevia rebaudiana Bertoni) to various priming treatments under drought stress. Applied Ecology and Environ. Res. 2017;16:4753-4771.
  30. Aravind J., Vimala D., Radharani J., Jacob S., Srinivasa K. The germinationmetrics package: A brief introduction. New Delhi, India: ICAR-National Bureau of Plant Genetic Resources. 2019:1-219.
  31. Lichtenthaler H.K., Wellburn A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In.: Portland Press Ltd. 1983. pp.105-108.
  32. Bates L.S., Waldren R.P., Teare I. Rapid determination of free proline for water-stress studies. Plant and soil. 1973; 39:205-207.
  33. Chance B., Maehly A. Assay of catalase and peroxidase. Methods in Enzymology, Academic Press, New York. 1995; 2:764-775.
  34. MacAdam J.W., Nelson C.J., Sharp R.E. Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology. 1992; 99:872-878.
  35. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry. 1971; 44:276-287.
  36. Afshari F., Nakhaei F., Mosavi S., Seghatoleslami M. Physiological and biochemical responses of Stevia rebaudiana Bertoni to nutri-priming and foliar nutrition under water supply restrictions. Indust. Crops and Prod. 2022; 176:114399.
  37. Saha D., Choyal P., Mishra U.N., Dey P., Bose B., Prathibha M., Gupta N.K., Mehta B.K., Kumar P., Pandey S. Drought stress responses and inducing tolerance by seed priming approach in plants. Plant Stress. 2022; 100066.
  38. Rajora N., Vats S., Raturi G., Thakral V., Kaur S., Rachappanavar V., Kumar M., Kesarwani A.K., Sonah H., Sharma T.R. Seed priming with melatonin: A promising approach to combat abiotic stress in plants. Plant Stress. 2022; 4:100071.
  39. Jain M., Kataria S., Hirve M., Prajapati R. Water deficit stress effects and responses in maize. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches. 2019: 129-151.
  40. Johnson R., Puthur J.T. Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry. 2021; 162:247-257.
  41. Adhikari B., Dhital P.R., Ranabhat S., Poudel H. Effect of seed hydro-priming durations on germination and seedling growth of bitter gourd (Momordica charantia). PLoS One. 2021; 16:e0255258.
  42. Salleh M.S., Nordin M.S., Puteh A., Shahari R., Zainuddin Z., Ghaffar M., Noraziyah A. Response of primed rice (Oryza sativa L.) seeds towards reproductive stage drought stress. Sains Malaysiana. 2021; 50:2913-2921.
  43. Monika N., Yadav N., Mamta Kumar N., Kumar A., Devi S., Kaur V., Kumar S., Arya S. Arbuscular mycorrhizal fungi: A potential candidate for nitrogen fixation.' in, Plant Stress Mitigators: Action and Application (Springer). 2022; pp. 201-253.
  44. Saadaoui N., Silini A., Cherif-Silini H., Bouket A.C., Alenezi F.N., Luptakova L., Boulahouat S., Belbahri L. Semi-Arid-Habitat-adapted plant-growth-promoting rhizobacteria allows efficient wheat growth promotion. Agronomy.2022; 12:2221.
  45. Zafari M., Ebadi A., Jahanbakhsh S., Sedghi M. Safflower (Carthamus tinctorius) biochemical properties, yield and oil content affected by 24-epibrassinosteroid and genotype under drought stress. J. Agric. Food Chem. 2020; 68:22.
  46. Kumar S., Sindhu S.S., Kumar R. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sci. 2022; 3:100094.
  47. Chauhan S., Mahawar S., Jain D., Udpadhay S.K., Mohanty S.R., Singh A., Maharjan E. Boosting sustainable agriculture by arbuscular mycorrhiza under stress condition: Mechanism and future prospective. Bio. Med. Res. Int. 2022; Article ID 5275449, 28.
  48. Ahmadi-Nouraldinvand F., Sharifi R.S., Siadat S.A., Khalilzadeh R. Reduction of salinity stress in wheat through seed bio-priming with mycorrhiza and growth-promoting bacteria and its effect on physiological traits and plant antioxidant activity with silicon nanoparticles application. Silicon. 2023; 2:1-12.