Antibacterial Activities of Kelussia odoratissima and Echinophora platyloba Extracts and Essential Oils against Waterborne Pathogens

Document Type : Research Paper

Authors

1 Research Center of Nutrition and Organic Products, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

2 Department of Clinical Pathology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

3 Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran

Abstract

Natural antimicrobials, such as plant extracts (Es) and essential oils (EOs), are gaining popularity in food preservation. This study investigated the attendance of waterborne bacterial pathogens in drinking water samples (DWSs) from various urban centers in Shahrekord. It also examined the sensitivity of these bacteria to Es and EOs derived from Kelussia odoratissima Mozaff. (KOME, KOMO) and Echinophora platyloba (EPE, EPO). In 2022, 200 distinct DWSs were gathered from various places in Shahrekord. Escherichia coli, Salmonella typhimurium, and Helicobacter pylori isolates were identified using routine biochemical and PCR tests, respectively. Following the preparation of hydroalcoholic Es and EOs, the chemical compounds were identified using the Folin-Ciocalteu method and gas chromatography-mass spectrometry (GC-MS), respectively. Using agar diffusion and micro-dilution methods, the antibacterial properties of KOME, EPE, KOMO, and EPO were evaluated against the bacterial isolates from drinking water. The overall frequencies of E. coli, S. typhimurium, and H. pylori were 2.5% (n= 5/200), 1% (n= 2/200), and 2% (n= 2/200), respectively. The total phenol content of KOME and EPE was 92.23±4.1 and 243.6±14.3 mg GAE/g, respectively. 5-methylsalicylic acid (40.57%) and cyclopropane (1-methyl-1,2-propadienyl)- (37.28%) were detected as the highest compounds in KOMO and EPO. The MIC and MBC values for the tested bacteria ranged from 250 to 1500 µg/mL and 500 to 2000 µg/mL, respectively. The most significant inhibition zone was observed for KOMO against S. typhimurium (20.03±0.08 mm). KOMO and EPO had more robust antibacterial properties than EPE and KOME. The findings revealed the presence of pathogens in drinking fountains, posing potential health risks. Moreover, the results demonstrated the efficacy of EOs as potent antimicrobial agents, suggesting their promising applications for reducing pathogenic bacteria in the food industry.

Keywords

Main Subjects


  1. Chen J., Shi Y., Cheng D., Jin Y., Hutchins W., Liu J. Survey of pathogenic bacteria of biofilms in a metropolitan drinking water distribution system. FEMS Microbiol. Lett. 2019;366(20):fnz225.
  2. Pindi P.K., Raghuveer Yadav P., Shiva Shanker A. Identification of Opportunistic Pathogenic Bacteria in Drinking Water Samples of Different Rural Health Centers and Their Clinical Impacts on Humans. Biomed Res. Int. 2013;2013:348250.
  3. Lan W., Liu H., Weng R., Zeng Y., Lou J., Xu H., et al. Microbial community of municipal drinking water in Hangzhou using metagenomic sequencing. Environ. Pollut. 2024;342:123066.
  4. Ke Y., Sun W., Xue Y., Zhu Y., Yan S., Xie S. Effects of treatments and distribution on microbiome and antibiotic resistome from source to tap water in three Chinese geographical regions based on metagenome assembly. Water Res. 2024;249:120894.
  5. Al-sbaihy Y.M., Bumadian M.M., Bozakouk I.H., Bleiblo A.M., Bleiblo F.A., Alteerah M.A., et al. Assessment of Bacteriological Quality of Drinking Water from Various Sources in Tukarah Town, NE Libya. Sustainability, Agri, Food and Environmental Research. 2024;12:844-8.
  6. Borjac J., Zeino W., Matar A., Khawaja S., Merheb M., Matar R. Prevalence of Antibiotic-Resistant Bacteria in Domestic Water Storage Tanks in Sidon, Lebanon. Water. 2023;15(2):335.
  7. Cabral J.P. Water microbiology. Bacterial pathogens and water. Int. J. Environ. Res. Public Health. 2010;7(10):3657-703.
  8. Wang X., Biswas S., Paudyal N., Pan H., Li X., Fang W., et al. Antibiotic Resistance in Salmonella Typhimurium Isolates Recovered From the Food Chain Through National Antimicrobial Resistance Monitoring System Between 1996 and 2016. Front. Microbiol. 2019;10:985.
  9. Saffari I., Motallebi Moghanjoghi A., Sharafati Chaleshtori R., Ataee M., Khaledi A. Nanoemulsification of rose (Rosa damascena) essential oil: Characterization, anti-Salmonella, in vitro cytotoxicity to cancer cells, and advantages in sheep meat application. J. Food Qual. 2023;2023.
  10. Rahmani Z., Karimi M., Saffari I., Mirzaei H., Nejati M., Sharafati Chaleshtori R. Nanoemulsion and nanoencapsulation of a hydroethanolic extract of Nettle (Urtica dioica) and Wormwood (Artemisia absinthium): comparison of antibacterial and anticancer activity. Front. Chem. 2024;12:1266573.
  11. Jahantab E., Mahmoudi M.R., Sharafatmandrad M., Karimian V., Sheidai-Karkaj E., Khademi A., et al. Determining Effective Environmental Factors in the Distribution of Endangered Endemic Medicinal Plant Species Using the BMLR Model: The Example of Wild Celery (Kelussia odoratissima Mozaff., Apiaceae) in Zagros (Iran). Plants. 2022;11(21):2965.
  12. Rahimmalek M., Szumny A., Gharibi S., Pachura N., Miroliaei M., Łyczko J. Chemical Investigations in Kelussia odoratissima Mozaff. Leaves Based on Comprehensive Analytical Methods: LC-MS, SPME, and GC-MS Analyses. Molecules. 2023;28(16):6140.
  13. Shafaroodi H., Soltanmoradi A., Asgarpanah J. The essential oil from Kelussia odoratissima Mozaff. fruits exerting potent analgesic and anti-inflammatory effects. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 2023;22(1): 59-67.
  14. Hosseini Z., Lorigooini Z., Rafieian-Kopaei M., Shirmardi H.A., Solati K. A Review of Botany and Pharmacological Effect and Chemical Composition of Echinophora Species Growing in Iran. Pharmacognosy Res. 2017;9(4):305-12.
  15. Soleimani Shadvar M., Moradkhani S. Chemical composition of the essential oils and antioxidant capacity evaluation of Echinophora platyloba DC. and Falcaria vulgaris Bernh. growing in Hamadan province of Iran. Journal of Medicinal Plants. 2022;21(83):19-34.
  16. Rahmatian N., Abbasi S., Tavakkoli Yaraki M., Abbasi N. Echinophora platyloba extract-mediated green synthesis of silver nanoparticles: Fine-tuning the size towards enhanced catalytic and antibacterial properties. J. Mol. Liq. 2023;391:123327.
  17. Steven J.A.C., Thorn R.M.S., Robinson G.M., Turner D., Lee J.E., Reynolds D.M. The control of waterborne pathogenic bacteria in fresh water using a biologically active filter. npj Clean Water. 2022;5(1):30.
  18. Nazemi K., Salari S., Eskandani M.A. Assessment of the Escherichia coli pollution in drinking water and water sources in Sistan, Iran. J. Water Reuse. Desalin. 2018;8(3):386-92.
  19. Bonyadian M., Moshtaghi H., Nadi H. PCR detection of Vibrio cholerae, Escherichia coli, and Salmonella sp. from bottled drinking water in Iran. J. Infect. Dev. Ctries. 2018;12(9):700-5.
  20. Ranjbar R., Khamesipour F., Jonaidi-Jafari N., Rahimi E. Helicobacter pylori in bottled mineral water: genotyping and antimicrobial resistance properties. BMC Microbiol. 2016;16(1):40.
  21. Raissy M., Sarshoughi M., Moumeni M. Molecular identification of some causative agents of warm-water streptococcosis by M-PCR in cultured rainbow trout, Chaharmahal-Bakhtiari Province, Iran. Iran. J. Fish. Sci. 2016;15(2):836-45.
  22. Yahaghi E., Khamesipour F., Mashayekhi F., Safarpoor Dehkordi F., Sakhaei M.H., Masoudimanesh M., et al. Helicobacter pylori in vegetables and salads: genotyping and antimicrobial resistance properties. Biomed Res Int. 2014;2014:757941.
  23. Dousandeh S., Asaadi Tehrani G., Amini B., Maziri P. Simultaneous detection of invA, STM4497, and fliC183 genes in Salmonella typhimurium by multiplex PCR method in poultry meat samples in Zanjan, Iran. Infect. Epidemiol. Microbiol. 2016;2(4):20-3.
  24. Arshadi N., Mousavi S.L., Amani J., Nazarian S. Immunogenic Potency of Formalin and Heat Inactivated E. coli O157:H7 in Mouse Model Administered by Different Routes. Avicenna J. Med. Biotechnol. 2020;12(3):194-200.
  25. Adzitey F. Antibiotic resistance of Escherichia coli and Salmonella enterica isolated from cabbage and lettuce samples in Tamale metropolis of Ghana. Int. J. Food Contam. 2018;5:1-7.
  26. Clinical and Laboratory Standards Institute. Methods of antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. Clinical and Laboratory Standards Wayne, PA; 2010.
  27. Sharafati-chaleshtori R., Sharafati-chaleshtori F., Sharafati-chaleshtori A., Ashrafi K. Antimicrobial effects and evaluation of total phenols flavonoids and flavonols contents of ethanolic extracts of Scrophularia striata. J. Shahrekord Univ. Med. Sci. 2010;11(4):32-7.
  28. Sharafati Chaleshtori R., Rafieian Kopaei M., Salehi E. Bioactivity of Apium petroselinum and Portulaca oleracea Essential Oils as Natural Preservatives. Jundishapur J. Microbiol. 2015;8(3):e20128.
  29. Sharafati Chaleshtori R., Taghizadeh M., Mazroii Arani N., Sharafati Chaleshtori F. A Comparative Study on the Antibacterial Activity of Artemisia dracunculus and Ocimum basilicum Essential Oils on Multidrug Resistant Bacteria Isolated from Ready to Eat Foods. J. Essent. Oil-Bear. Plants. 2018;21(3):701-12.
  30. CLSI WL. M02-A11: Performance standards for antimicrobial disk susceptibility tests; Approved Standard. CLSI (Clinical and Laboratory Standards Institute). 2015;32(1).
  31. Banafsheh H., Somayeh B., Mahsa K., Ramin A., Amirhooshang A. Potentially Infectious Helicobacter pylori in Tap Water in Kermanshah, Western Iran. Iran. J. Public Health. 2023;52(7):1514-1521.
  32. Sobur M.A., Sabuj A.A.M., Sarker R., Rahman A., Kabir S.M.L., Rahman M.T. Antibiotic-resistant Escherichia coli and Salmonella spp. associated with dairy cattle and farm environment having public health significance. Vet. World. 2019;12(7):984-93.
  33. Chaleshtori F.S., Arani N.M., Aghadavod E., Naseri A., Chaleshtori R.S. Molecular characterization of Escherichia coli recovered from traditional milk products in Kashan, Iran. Vet. World. 2017;10(10):1264.
  34. Miraj S, Jivad N, Kiani S. A review of chemical components and pharmacological effects of Kelussia odoratissima Mozaff. Pharm. Lett. 2016;8(1):140-7.
  35. Oroojalian F., Orafaee H., Azizi M. Synergistic antibaterial activity of medicinal plants essential oils with biogenic silver nanoparticles. Nanomed. J. 2017;4(4).237-244.
  36. Ranjbar R., Babaie S. Evaluation the antibacterial effects of Echinophora platyloba extracts against some Salmonella species. Electron. Physician. 2016;8(2):1943-8.
  37. Bazvandi L., Shokoohinia Y., Ghiasvand N., Mohajeri P., Ashrafi B., Salimikia I. The Antimicrobial Activity of Different Extracts from Echinophora platyloba DC. Herb. Med. J. 2017:153-7.
  38. Fayyaz N., Mohamadi Sani A., Najaf Najafi M. Antimicrobial activity and composition of essential oil from Echinophora platyloba. J. Essent. Oil-Bear. Plants. 2015;18(5):1157-64.
  39. Lobiuc A., Pavăl N.E., Mangalagiu I.I., Gheorghiță R, Teliban G-C, Amăriucăi-Mantu D., et al. Future antimicrobials: Natural and functionalized phenolics. Molecules. 2023;28(3):1114.
  40. Fathimoghaddam E., Shakerian A., Sharafati Chaleshtori R, Rahimi E. Chemical composition and antioxidant properties and antimicrobial effects of Satureja bachtiarica Bunge and Echinophora platyloba DC. Essential oils against listeria monocytogenes. Journal of Medicinal plants and By-product. 2020;9(Special):47-58.
  41. Mosavinezhad K., Shakerian A., Sharafati Chaleshtori R., Rahimi E. Antimicrobial and Antioxidant Effects of Thymus Daenensis and Camellia Sinensis Ethanolic Extracts of Chicken Meat During Frozen Storage. Journal of Medicinal plants and By-product. 2020;9(Special):17-27.
  42. Zhou H., Chen L., Ouyang K., Zhang Q., Wang W. Antibacterial activity and mechanism of flavonoids from Chimonanthus salicifolius S. Y. Hu. and its transcriptome analysis against Staphylococcus aureus. Front. Microbiol. 2023;13:1103476.
  43. Yuan G., Guan Y., Yi H., Lai S., Sun Y., Cao S. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci. Rep. 2021;11(1):10471.