Evaluation of the Anti-inflammatory and Immunomodulatory Properties of Jatropha multifida stem sap

Document Type : Research Paper

Authors

1 Research Unit in Applied Microbiology and Pharmacology of natural substances, Polytechnic school of Abomey-Calavi, University of Abomey-Calavi

2 National Medico-Sanitary Institute (INMeS), University of Abomey-Calavi

3 Multidisciplinary Research Laboratory for Technical Education (LARPET) of the National Higher School for Technical Education (ENSET) of Lokossa; National University of Science, Technology, Engineering and Mathematics (UNSTIM), Abomey, Benin

4 Faculty of Science and Technology, University of Abomey-Calavi

Abstract

Inflammatory diseases remain a significant public health issue, posing challenges in their management due to the adverse effects associated with conventional anti-inflammatory drugs. Exploring medicinal plants as a viable avenue for researching novel anti-inflammatory drugs offers a promising alternative. Jatropha multifida is a well-known traditional plant of the Euphorbiaceae family with undisputed medicinal properties, both haemostatic and antimicrobial. Very little data exists on its anti-inflammatory properties. This study aimed to assess the anti-inflammatory and immunomodulatory properties of Jatropha multifida stem sap
The anti-inflammatory activity of the stem sap was evaluated in vitro by the anti-hemolytic activity assessment method, in vivo by the paw edema test in rats. The immunomodulatory potential was determined using a chemical mediator of inflammation, TNFα. Its antioxidant activity by the DPPH method was evaluated.
The results of this study revealed that Jatropha multifida sap with an LC50 of 0.604 mg/mL, is non-toxic and showed a 66.21% higher anti-hemolytic effect than Diclofenac (25.94 %) and Ibuprofen (40 %). It also has a high DPPH inhibitory power (86.61 %) at 0.5 mg/mL similar to that of vitamin C. Sap at the concentration of 800 mg/Kg has overall the same effects on paw inflammation as Diclofenac and results in a greater decrease in TNFα (286.15) at values similar to those of normal control rats.
The therapeutic use of this sap in a traditional setting is therefore once again justified due to its proven anti-inflammatory and immunomodulatory properties.

Keywords

Main Subjects


  1. Borges R.S., Ortiz B.L.S., Pereira A.C.M., Keita H., Carvalho J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacology. 2019;229:29–45.
  2. Oguntibeju O.O. Medicinal plants with anti-inflammatory activities from selected countries and regions of Africa. J Inflamm Res. 2018; 11: 307–317.
  3. Ahmed A.U. An overview of inflammation: mechanism and consequences. Frontiers in Biology. 2011;6:274–281.
  4. Leelaprakash G., Dass S.M. Invitro anti-inflammatory activity of methanol extract of Enicostemma axillare. International J. Drug Development and Res. 2011;3: 189-196.
  5. Assayad O. Enjeux de l’automedication par les ains en periode COVID-19. PhD Thesis 2022.
  6. Meriem B.A., Rania B. Contribution à l’étude des effets indésirable De l’automédication, PhD Thesis. Université Larbi Tébessi-Tébessa. 2022.
  7. Abdullahi A. A. Trends and challenges of traditional medicine in Africa, African Journal of Traditional. Complementary and Alternative Medicines. 2011;8.
  8. Maroyi A. Traditional use of medicinal plants in south-central Zimbabwe: review and perspectives. J. Ethnobiology and Ethnomedicine. 2013;9:1–18.
  9. Khan A., Hassan S.M., Mughal S.S. Biological Evaluation of a Herbal Plant: Cichrorium intybus. Sci. Technol. 2022;6:26–38.
  10. Akoègninou A., Burg W.J. van der, Maesen L.J.G. van der, Flore analytique du Bénin. Backhuys Publishers, Leiden, 2006.
  11. Klotoé J. Ethnopharmacological Survey on Antihemorrhagic Medicinal Plants in South of Benin, EJMP, 2013; 3: 40–51.
  12. Klotoe J.R., Ategbo J.M., Dougnon V., Loko F., Dramane K. Hemostatic Effect of Jatropha multifida L. (Euphorbiaceae) in Rats Having Coagulation Disorders, J App Biol Biotech, 2017;5:26–29.
  13. Victorien D., Toussaint S., Jerrold A., Alidah A., Afoussatou A., Jacques D., et al. Evaluation of the Antibacterial Activity of Jatropha multifida sap and Artemisia annua Extract on some Clinical Strains Responsible of Urinary Tract Infections. Indian J. Sci. Technol. 2019;12:1–10.
  14. Klotoé J., Dougnon V., Dougnon T., Agbodjento E., Ategbo J., Loko F. Jatropha multifida linn (euphorbiaceae): exploration des proprietes antibacteriennes et du pouvoir cicatrisant de la seve de cette plante chez le rat albinos de souche wistar, remise: Revue de Microbiologie Industrielle Sanitaire et Environnementale. 2014; 8:120–132.
  15. Anani K., Adjrah Y., Améyapoh Y., Karou S.D., Agbonon A., de Souza C., et al. Antimicrobial, Anti-inflammatory and Antioxidant Activities of Jatropha multifida L. (Euphorbiaceae), Pharmacognosy Res. 2016;8:142–146
  16. Moharram F., Marzouk, Haggag E., El-Batran S., Ibrahim R. Biological examination and novel biflavone di-C-glycosides from Jatropha multifida L. leaves. Planta Medica - PLANTA MED. 2007; 73.
  17. Falodun A., Igbe I., Erharuyi O., Agbanyim O.J. Chemical Characterization, Anti-inflammatory and Analgesic Properties of Jatropha multifida Root Bark. Journal of Applied Sciences and Environmental Management. 2013;17:357–362.
  18. Nguta J., M. Mbaria J., W. Gakuya D., K. Gathumbi P., D. Kabasa J., G. Kiama S. Evaluation of Acute Toxicity of Crude Plant Extracts from Kenyan Biodi-versity using Brine Shrimp, Artemia salina L. (Artemiidae). The Open Conference Proceedings J. 2012;3.
  19. Trabsa H. Activité antioxydante et anti-inflammatoire des fractions des plantes médicinales: Sedum sediforme et Lycium arabicum. PhD Thesis. 2018.
  20. Falade O.S., Otemuyiwa I.O., Oladipo A., Oyedapo O.O., Akinpelu B.A., Adewusi S.R.A. The chemical composition and membrane stability activity of some herbs used in local therapy for anemia. J Ethnopharmacol. 2005;102:15–22.
  21. Sangeetha G., Vidhya R. In vitro anti-inflammatory activity of different parts of Pedalium murex (L.). Int. J. Herb. Med. 2016;4:31–36.
  22. Smahia R., Nasser B., Khaled S., Abdelkrim C. Evaluation de l’activité anti-inflammatoire d’extraits aqueux de feuilles Limoniastrum feei (PLUMBAGINACEA), Université Kasdi Merbah Ouargla. 2018.
  23. Mohanty S.K., Swamy M.K., Middha S.K., Prakash L., Subbanarashiman B., Maniyam A. Analgesic, Anti- inflammatory, Anti- lipoxygenase Activity and Characterization of Three Bioactive Compounds in the Most Active Fraction of Leptadenia reticulata (Retz.) Wight & Arn. - A Valuable Medicinal Plant, Iran J Pharm Res. 2015; 14: 933–942.
  24. Scott P.M., Bilodeau P.S., Zhdankina O., Winistorfer S.C., Hauglund M.J., Allaman M.M., et al. GGA proteins bind ubiquitin to facilitate sorting at the trans-Golgi network. Nat Cell Biol. 2004; 6: 252–259.
  25. Stankov S. Definition of Inflammation, Causes of Inflammation and Possible Anti-inflammatory Strategies. The Open Inflammation J. 2012; 5: 1–9.
  26. Moshi M.J., van den Beukel C.J., Hamza O.J., Mbwambo Z.H., Nondo R.O., Masimba P.J., et al. Brine Shrimp Toxicity Evaluation of Some Tanzanian Plants Used Traditionally for the Treatment of Fungal Infections. Afr J Tradit Complement Altern Med. 2006; 4: 219–225.
  27. Meyer B.N., Ferrigni N.R., Putnam J.E., Jacobsen L.B., Nichols D.E., McLaughlin J.L. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med. 1982; 45: 31–34.
  28. Amani A., Loubna B. Etude phytochimique et Evaluation de l’activité anti-inflammatoire d’une plante médicinale: Ephédra alata alenda. 2018.
  29. Oyedapo O.O., Makinde A.M., Ilesanmi G.M., Abimbola E.O., Akinwunmi K.F., Akinpelu B.A. Biological activities (anti-inflammatory and anti-oxidant) of fractions and methanolic extract of Philonotis hastate (Duby Wijk & MargaDant). African Journal of Traditional. Complementary and Alternative Medicines. 2015;12:50–55.
  30. Reshma, Kp A., P B. In vitro anti-inflammatory, antioxidant and nephroprotective studies on leaves of aegle marmelos and ocimum sanctum. Asian J Pharmaceutical and Clinical Res. 2014;121–129.
  31. Ahmad T., Ohlsson C., Sääf M., Ostenson C.-G., Kreicbergs A. Skeletal changes in type-2 diabetic Goto-Kakizaki rats. J Endocrinol. 2003; 178: 111–116.
  32. Hämäläinen M., Nieminen R., Vuorela P., Heinonen M., Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm. 2007;456730.
  33. Hwang J.-T., Lee Y.-K., Shin J.-I., Park O.J. Anti-inflammatory and anticarcinogenic effect of genistein alone or in combination with capsaicin in TPA-treated rat mammary glands or mammary cancer cell line. Ann N Y Acad Sci. 2009;1171:415–420.
  34. Xagorari A., Papapetropoulos A., Mauromatis A., Economou M., Fotsis T., Roussos C. Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. J Pharmacol Exp Ther. 2001; 296: 181–187.
  35. Tsai Y.-C., Wang S.-L., Wu M.-Y., Liao C.-H., Lin C.-H., Chen J.-J., et al. Pilloin, A Flavonoid Isolated from Aquilaria sinensis, Exhibits Anti-Inflammatory Activity In Vitro and In Vivo. Molecules. 2018; 23: 3177.
  36. Chaudhuri S., Banerjee A., Basu K., Sengupta B., Sengupta P.K. Interaction of flavonoids with red blood cell membrane lipids and proteins: antioxidant and antihemolytic effects. Int J Biol Macromol. 2007; 41: 42–48.
  37. Ghedira K. Les flavonoïdes: structure, propriétés biologiques, rôle prophylactique et emplois en thérapeutique. Phytotherapy. 2005; 3:162–169.
  38. Mladěnka P., Macáková K., Filipskỳ T., Zatloukalová L., Jahodář L., Bovicelli P., et al. In vitro analysis of iron chelating activity of flavonoids. Journal of Inorganic Biochemistry. 2011; 105: 693–701.
  39. Sanogo R., Diallo D., Diarra S., Ekoumou C., Bougoudogo F. Activité antibactérienne et antalgique de deux recettes traditionnelles utilisées dans le traitement des infections urinaires et la cystite au Mali. Med. Afr. noire (En ligne), 2006;18–24.
  40. Rai A.K., Singh S.P., Pandey A.R., Ansari A., Ahmad S., Sashidhara K.V., et al. Flavonoids from Polyalthia longifolia prevents advanced glycation end products formation and protein oxidation aligned with fructose-induced protein glycation. Natural Product Research. 2021; 35: 2921–2925.
  41. Ho C.-L., Li L.-H., Weng Y.-C., Hua K.-F., Ju T.-C. Eucalyptus essential oils inhibit the lipopolysaccharide-induced inflammatory response in RAW264. 7 macrophages through reducing MAPK and NF-κB pathways. BMC Complementary Medicine and Therapies. 2020;20: 1–11.
  42. Dellal A., Toumi-Benali F., Dif M.M., Bouazza S., Brikhou S., Mekhfi N. Anti-inflammatory, Analgesic and Antioxidant Activities of the Hydroalcoholic Extract from Celery (Apium graveolens) Leaves, Phytothérapie. 2018;16:S237–S244.
  43. Basit A., Shutian T., Khan A., Khan S.M., Shahzad R., Khan A., et al. Anti-inflammatory and analgesic potential of leaf extract of Justicia adhatoda L. (Acanthaceae) in Carrageenan and Formalin-induced models by targeting oxidative stress. Biomedicine & Pharmacotherapy, 2022;153:113322.
  44. Gierlikowska B., Gierlikowski W., Bekier K., Skalicka-Woźniak K., Czerwińska M.E., Kiss A.K. Inula helenium and Grindelia squarrosa as a source of compounds with anti-inflammatory activity in human neutrophils and cultured human respiratory epithelium. J Ethnopharma. 2020;249:112311.
  45.