Chemical Composition and Antimicrobial Potential of Eucalyptus camaldulensis Essential Oil from Shushtar, Iran

Document Type : Research Paper

Authors

1 Department of Production Engineering and Plant Genetics, Faculty of Science and Agricultural Engineering, Razi University, Kermanshah, Iran

2 Department of Agricultural Biotechnology, Tarbiat Modares University, Tehran. Iran.

3 Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, AEOI, Karaj, Iran.

Abstract

Here, to assess the chemical composition and antibacterial/antioxidant effects of the essential oils of eucalyptus, the young leaves of eucalyptus trees (Eucalyptus camaldulensis) cultivated in Shushtar city (Khuzestan Province, Iran) were utilized in the late spring season of 2024. The essential oil extraction was carried out using the water distillation method, resulting in a 2% yield based on the dry weight of the leaves. Gas chromatography-mass spectrometry (GC-MS) analysis of the essential oil indicated the presence of (S,E)-2,5-Dimethyl-4-vinylhexa-2,5-dien-1-yl acetate, alpha-terpinene, and (-)-Globulol as the major components, accounting for 17.63%, 9.97%, and 6.23% of the total composition, respectively. Further DPPH assay testing showed a concentration-dependent inhibitory effect, with the highest concentration (0.80 mg/ml) exhibiting an impressive 93.62% inhibition. According to the ANOVA results, a significant difference was observed among all nine treatments (multiplying by three different essential oil concentrations of 0.2, 0.4, and 0.8 mg/mL and three different bacterial agents of S. aureus, B. cereus, and E. coli) in terms of inhibition zone recorded using the agar well diffusion method. The largest inhibition zones were observed for three treatments of "0.8 mg/mL + B. cereus", "0.4 mg/mL + S. aureus", and "0.8 mg/mL + S. aureus" with the inhibition zone values of 39.62 mm, 35.37 mm, and 39.11 mm, respectively. On the other hand, the minimum inhibition zone value of 14.02 mm was observed for the "0.2 mg/mL + E. coli" treatment. According to the results, both gram-positive bacteria of S. aureus and S. cereus were more sensitive to the essential oil of E. camaldulensis essential oil than the gram-negative bacteria of E. coli. These current promising results demonstrated the effectiveness of E. camaldulensis essential oil as a natural and eco-friendly alternative for antimicrobial studies.

Keywords

Main Subjects


  1. Hyldgaard M., Mygind T., Meyer R.L. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology. 2012;3:12.
  2. Raut J.S., Karuppayil S.M. A status review on the medicinal properties of essential oils. Industrial Crops and Products. 2014;62:250-264.
  3. Mossa A-T.H. Green pesticides: Essential oils as biopesticides in insect-pest management. Journal of Environmental Science and Technology. 2016;9(5):354.
  4. Pavela R., Benelli G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends in Plant Science. 2016;21(12):1000-1007.
  5. Ferraz C.A., Pastorinho M.R., Palmeira-de-Oliveira A., Sousa A.C. Ecotoxicity of plant extracts and essential oils: A review. Environmental Pollution 2022;292:118319.
  6. Ali B., Al-Wabel N.A., Shams S., Ahamad A., Khan S.A., Anwar F. Essential oils used in aromatherapy: A systemic review. Asian Pacific Journal of Tropical Biomedicine. 2015;5(8):601-611.
  7. Moghaddam M., Mehdizadeh L. Chemistry of essential oils and factors influencing their constituents. In: Soft chemistry and food fermentation. Elsevier; 2017: 379-419.
  8. Marriott P.J., Shellie R., Cornwell C. Gas chromatographic technologies for the analysis of essential oils. Journal of Chromatography A. 2001;936(1-2):1-22.
  9. Tisserand R., Young R. Essential oil safety. a guide for health care professionals: Elsevier Health Sciences; 2013.
  10. Alara JA, Alara OR: An Overview of the Global Alarming Increase of Multiple Drug Resistant: A Major Challenge in Clinical Diagnosis. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders). 2024;24(3):26-42.
  11. Salam M., Al-Amin M., Salam M., Pawar J., Akhter N., Rabaan A., Alqumber M. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. In.
  12. Košćak L., Lamovšek J., Đermić E., Godena S. The Antibacterial Effect of Selected Essential Oils and Their Bioactive Constituents on Pseudomonas savastanoi pv. savastanoi: Phytotoxic Properties and Potential for Future Olive Disease Control. Microorganisms. 2023;11(11):2735.
  13. Košćak L., Lamovšek J., Đermić E., Prgomet I., Godena S. Microbial and plant-based compounds as alternatives for the control of phytopathogenic bacteria. Horticulturae. 2023;9(10):1124.
  14. Chandorkar N., Tambe S., Amin P., Madankar C. A systematic and comprehensive review on current understanding of the pharmacological actions, molecular mechanisms, and clinical implications of the genus Eucalyptus. Phytomedicine Plus. 2021;1(4):100089.
  15. Coppen J.J. Eucalyptus: the genus Eucalyptus: CrC Press; 2002.
  16. Sabo V.A., Knezevic P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Industrial Crops and Products. 2019;132:413-429.
  17. Almas I., Innocent E., Machumi F., Kisinza W. Chemical composition of essential oils from Eucalyptus globulus and Eucalyptus maculata grown in Tanzania. Scientific African. 2021;12:e00758.
  18. Khedhri S., Polito F., Caputo L., De Feo V., Khamassi M., Kochti O., Hamrouni L., Mabrouk Y., Nazzaro F., Fratianni F. Chemical composition, antibacterial properties, and anti-enzymatic effects of Eucalyptus essential oils sourced from Tunisia. Molecules; 2023;28(20):7211.
  19. Mondal M., Quispe C., Sarkar C, Bepari T.C., Alam M.J., Saha S., Ray P., Rahim M.A., Islam M.T., Setzer W.N. Analgesic and anti-inflammatory potential of essential oil of Eucalyptus camaldulensis leaf: in vivo and in silico studies. Natural Product Communications. 2021;16(4):1934578X211007634.
  20. Taheri E., Ghorbani S., Safi M., Sani N.S., Amoodizaj F.F., Heidari M., Chavoshi R., Hajazimian S., Isazadeh A., Heidari M. Inhibition of colorectal cancer cell line CaCo-2 by essential oil of Eucalyptus camaldulensis through induction of apoptosis. Acta Medica Iranica. 2020;260-265.
  21. El-Baz F.K., Mahmoud K., El-Senousy W.M., Darwesh O., ElGohary A. Antiviral–antimicrobial and schistosomicidal activities of Eucalyptus camaldulensis essential oils. Int J Pharm Sci Rev Res. 2015;31(1):262-268.
  22. Sahin Basak S., Candan F. Chemical composition and in vitro antioxidant and antidiabetic activities of Eucalyptus camaldulensis Dehnh. essential oil. Journal of the Iranian Chemical Society. 2010;7:216-226.
  23. Alatawi K.A., Ravishankar D., Patra P.H., Bye A.P., Stainer A.R., Patel K., Widera D., Vaiyapuri S. 1, 8-Cineole affects agonists-induced platelet activation, thrombus formation and haemostasis. Cells. 2021;10(10):2616.
  24. Caldas G.F.R., Limeira M.M.F., Araújo A.V., Albuquerque G.S., da Costa Silva-Neto J, da Silva T.G., Costa-Silva J.H., de Menezes I.R.A., da Costa J.G.M., Wanderley A.G. Repeated-doses and reproductive toxicity studies of the monoterpene 1, 8-cineole (eucalyptol) in Wistar rats. Food and Chemical Toxicology. 2016;97:297-306.
  25. Xu J., Hu Z-Q., Wang C., Yin Z-Q., Wei Q., Zhou L-J, Li L., Du Y-H., Jia R-Y., Li M. Acute and subacute toxicity study of 1, 8-cineole in mice. International Journal of Clinical and Experimental Pathology. 2014;7(4):1495.
  26. Mirzaei A., Mohammadi M.R. Anticholinergic, antimicrobial, and anticancer perspectives of atropine: a mini-review. Micro Nano Bio Aspects. 2023;2(1):39-44.
  27. Aziziaram Z., Bilal I., Zhong Y., Mahmod A.K., Roshandel M.R. Protective effects of curcumin against naproxen-induced mitochondrial dysfunction in rat kidney tissue. Cellular, Molecular and Biomedical Reports. 2021;1(1):23-32.
  28. Alavi M., Hamblin M.R., Aghaie E., Mousavi S.A.R., Hajimolaali M. Antibacterial and antioxidant activity of catechin, gallic acid, and epigallocatechin-3-gallate: Focus on nanoformulations. Cellular, Molecular and Biomedical Reports. 2023;3(2):62-72.
  29. Saravani S., Ghaffari M., Aali H. Hydroalcoholic extract of Psidium guajava plant and bone marrow cells: examination and analysis of effects. Cellular, Molecular and Biomedical Reports. 2024;4(3):177-188.
  30. Aouini J., Bachrouch O., Msaada K., Fares N., Jallouli S., Médiouni Ben Jemâa J., Soliman T.M., Sriti J. Screening of antimicrobial and insecticidal properties of essential oils extracted from three Tunisian aromatic and medicinal plants. International Journal of Environmental Health Research. 2024;34(2):923-933.
  31. Ibrahim F.M., Mohammed R.S., Abdelsalam E., Ashour WE-S., Magalhães D., Pintado M., El Habbasha E.S. Egyptian Citrus Essential Oils Recovered from Lemon, Orange, and Mandarin Peels. Phytochemical and Biological Value. Horticulturae. 2024;10(2):180.
  32. Taheri P., Soweizy M., Tarighi S. Application of essential oils to control some important fungi and bacteria pathogenic on cereals. Journal of Natural Pesticide Research. 2023;6:100052.
  33. Khameneh B., Iranshahy M., Soheili V., Fazly Bazzaz B.S. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrobial Resistance & Infection Control. 2019;8:1-28.
  34. Asiaei E.O., Moghimipour E., Fakoor M.H. Evaluation of antimicrobial activity of Eucalyptus camaldulensis essential oil against the growth of drug-resistant bacteria. Jundishapur Journal of Natural Pharmaceutical Products. 2018;13(4).
  35. Chaves T.P., Pinheiro R.E.E., Melo E.S., Soares M.J.d.S, Souza J.S.N, de Andrade T.B., de Lemos T.L.G., Coutinho H.D. Essential oil of Eucalyptus camaldulensis Dehn potentiates β-lactam activity against Staphylococcus aureus and Escherichia coli resistant strains. Industrial Crops and Products. 2018;112:70-74.
  36. Khubeiz M., Mansour G., Zahraa B. Chemical compositions and antimicrobial activity of leaves Eucalyptus camaldulensis essential oils from four syrian samples. International Journal of Current Pharmaceutical Research. 2016;7:251-257.
  37. Lima L.M., Babakhani B., Boldaji S.A.H., Asadi M., Boldaji R.M. Essential oils composition and antibacterial activities of Eucalyptus camaldulensis Dehn. Medicinal Plants-International Journal of Phytomedicines and Related Industries. 2013;5(4):214-218.
  38. Mota A.S., Martins M.R., Arantes S., Lopes V.R., Bettencourt E., Pombal S., Gomes A.C., Silva L.A. Antimicrobial activity and chemical composition of the essential oils of Portuguese Foeniculum vulgare fruits. Natural Product Communications. 2015;10(4):1934578X1501000437.
  39. Huang Z., Jia S., Zhang L., Liu X., Luo Y. Inhibitory effects and membrane damage caused to fish spoilage bacteria by cinnamon bark (Cinnamomum tamala) oil. LWT. 2019;112:108195.
  40. Xiang F., Bai J., Tan X., Chen T., Yang W., He F. Antimicrobial activities and mechanism of the essential oil from Artemisia argyi Levl. et Van. var. argyi cv. Qiai. Industrial Crops and Products. 2018;125:582-587.
  41. Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis. 2016;6(2):71-79.
  42. Magaldi S., Mata-Essayag S., De Capriles C.H., Pérez C., Colella M., Olaizola C, Ontiveros Y. Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases. 2004;8(1):39-45.
  43. Valgas C., Souza S.Md., Smânia E.F., Smânia Jr. A. Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology. 2007;38:369-380.
  44. Brand-Williams W., Cuvelier M-E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology. 1995;28(1):25-30.
  45. Metsalu T., Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research. 2015;43(W1):W566-W570.
  46. Sebei K., Sakouhi F., Herchi W., Khouja M.L., Boukhchina S. Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biological Research. 2015;48:1-5.
  47. Elaissi A., Salah K.H., Mabrouk S., Larbi K.M., Chemli R., Harzallah-Skhiri F. Antibacterial activity and chemical composition of 20 Eucalyptus species’ essential oils. Food Chemistry. 2011;129(4):1427-1434.
  48. Diloksumpun S., Wongkattiya N., Buaban K., Saleepochn T., Suttiarporn P., Luangkamin S. Variation in the antibacterial and antioxidant activities of essential oils of five new Eucalyptus urophylla ST Blake clones in Thailand. Molecules. 2022;27(3):680.
  49. Abrahim A., Tahir M., Sasikumar J., Kebede M., Ejigu M.C., Yones A.M. Antibacterial activity of essential oils from Eucalyptus camaldulensis Dehn. and Eucalyptus tetragona F. Muell. Pharmacological Research-Natural Products. 2024;3:100033.
  50. Polito F., Fratianni F., Nazzaro F., Amri I., Kouki H., Khammassi M., Hamrouni L., Malaspina P., Cornara L., Khedhri S. Essential oil composition, antioxidant activity and leaf micromorphology of five Tunisian Eucalyptus species. Antioxidants. 2023;12(4):867.
  51. Bachir R.G., Benali M. Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pacific Journal of Tropical Biomedicine. 2012;2(9):739-742.
  52. Amiri Z., Sohrabi N. Evaluation of the antimicrobial effects of Satureja montana essential oil alone and in combination with Nisin on scherichia coli and Staphylococcus aureus. J Res Med Dent Sci. 2018; 6:54.
  53. Zomorodian K., Ghadiri P., Saharkhiz M.J., Moein M.R., Mehriar P., Bahrani F, Golzar T, Pakshir K, Fani MM. Antimicrobial activity of seven essential oils from Iranian aromatic plants against common causes of oral infections. Jundishapur Journal of Microbiology. 2015;8(2).
  54. Faleiro M.L. The mode of antibacterial action of essential oils. Science against microbial pathogens: Communicating Current Research and Technological Advances. 2011;2:1143-1156.
  55. Turgis M., Han J., Caillet S., Lacroix M. Antimicrobial activity of mustard essential oil against Escherichia coli O157: H7 and Salmonella typhi. Food Control. 2009;20(12):1073-1079.
  56. Lambert R., Skandamis P.N., Coote P.J., Nychas G.J. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology. 2001;91(3):453-462.
  57. Dorman H.D., Deans S.G. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology. 2000;88(2):308-316.
  58. Helander I.M., Alakomi H-L., Latva-Kala K., Mattila-Sandholm T., Pol I., Smid E.J., Gorris L.G., von Wright A. Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of Agricultural and Food Chemistry. 1998;46(9):3590-3595.
  59. Ultee A., Bennik M., Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology. 2002;68(4):1561-1568.
  60. Carson C.F., Mee B.J., Riley T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrobial Agents and Chemotherapy. 2002;46(6):1914-1920.
  61. Oussalah M., Caillet S., Saucier L., Lacroix M. Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Science. 2006;73(2):236-244.
  62. Burt S.A., van der Zee R., Koets A.P., de Graaff A.M., van Knapen F., Gaastra W., Haagsman H.P., Veldhuizen E.J. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157: H7. Applied and Environmental Microbiology. 2007;73(14):4484-4490.
  63. Becerril R., Gómez-Lus R., Goni P., López P., Nerín C. Combination of analytical and microbiological techniques to study the antimicrobial activity of a new active food packaging containing cinnamon or oregano against E. coli and S. aureus. Analytical and Bioanalytical Chemistry. 2007;388:1003-101.