Analysis of miRNAs and Genes Related to Cardiovascular and Neurological Diseases in Cicer arietinum L.

Document Type : Research Paper

Authors

1 Department of Pathology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran

2 Department of Biology, Payame Noor University, Terhran, Iran

3 Department of Pediatrics, School of Medicine, Amir al momenin Hospital, Zabol University of Medical Sciences, Zabol, Iran

4 Department of Cardiology, Zabol University of Medical Sciences, Zabol, Iran

5 Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

6 Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran

Abstract

Chickpea (Cicer arietinum L.) is one of the most important economic legumes in the world, with 16 chromosomes, and belongs to the Leguminosae or Fabaceae family. This plant is sensitive to cold and is subjected to many environmental stresses every year. In general, the stress of cold, drought, and salinity, in addition to causing severe damage and yield loss, also leads to changes in physiological processes and gene expression. MicroRNAs are a group of conserved RNAs in plants and animals that play an important role in regulating post-transcriptional factors. Chickpea also plays an effective role in promoting resistance to various diseases such as cardiovascular diseases, diabetes, obesity, and cancer. Therefore, in this study, we investigated micro RNAs effective in resistance to environmental stresses, as well as clinical and bioinformatics investigations in the MTHFR and FOLR1 genes against cardiovascular and neurological diseases. The results of this research showed that various miRNAs such as miR159, miR160, miR166, miR167, miR169, miR171, miR172, miR319, miR393, miR394, and miR396 are effective in creating stress resistance in chickpeas through activating different genes. This research showed that micro RNAs act as inhibitory and modulating factors against various stresses. The studies conducted from the analysis of antibodies in C. arietinum showed that the FOLR1 gene is more active in the extracellular part and the plasma membrane and the MTHFR gene in the cytosol compared to other cells in other organs. Also, the analysis of the expression of these genes showed that the FOLR1 gene is less expressed than the MTHFR gene in heart but it is more in the brain. On the other hand, the MTHFR gene was more expressed in male tissues, muscle tissues, bone marrow, and lymphoid tissue. Also, GMQE in FOLR1 (0.79) and MTHFR (0.87) genes showed that the three-dimensional structure provides an accurate estimation of these genes activities. Finally, it can be concluded that by conducting studies in the field of tracking miRNAs and effective genes, as well as accurate diagnosis with the help of molecular markers, an effective step can be taken to increase resistance to diseases and stresses and significantly improve the performance of the product.

Keywords

Main Subjects


  1. Thushan Sanjeewa W.G., Wanasundara J.P.D., Pietrasik Z., Shand P.J. Characterization of chickpea (Cicer arietinum L.) flours and application in low-fat pork bologna as a model system. Food Res Int. 2010;43(2):617-626.
  2. Varshney R.K., Song C., Saxena R.K., Azam S., Yu S., Sharpe A.G., Cannon S., Baek J., Rosen B.D., Tar'an B. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnol. 2013;31(3):240-246.
  3. Jukanti A.K., Gaur P.M., Gowda C., Chibbar R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British J Nutr. 2012;108(S1):S11-S26.
  4. Pathan F., Trimukhe A., Deshmukh R., Annapure U. A peleg modeling of water absorption in cold plasma-treated Chickpea (Cicer arietinum L.) cultivars. Sci Rep. 2023;13(1):7857.
  5. Zia-Ul-Haq M., Iqbal S., Ahmad S., Imran M., Niaz A., Bhanger M.I. Nutritional and compositional study of Desi chickpea (Cicer arietinum L.) cultivars grown in Punjab, Pakistan. Food Chem. 2007;105(4):1357-1363.
  6. Wang J., Li Y., Li A., Liu R.H., Gao X., Li D., Kou X., Xue Z. Nutritional constituent and health benefits of chickpea (Cicer arietinum L.): A review. Food Res Int. 2021;150:110790.
  7. Duarte C.M., Mota J., Assunção R., Martins C., Ribeiro A.C., Lima A., Raymundo A., Nunes M.C., Ferreira R.B., Sousa I. New alternatives to milk from pulses: chickpea and lupin beverages with improved digestibility and potential bioactivities for human health. Front Nutr. 2022;9.
  8. Lima A.I.G., Mota J., Monteiro S.A.V.S., Ferreira R.M.S.B. Legume seeds and colorectal cancer revisited: Protease inhibitors reduce MMP-9 activity and colon cancer cell migration. Food Chem. 2016;197:30-38.
  9. Mota J., Direito R., Rocha J., Fernandes J., Sepodes B., Figueira M.E., Raymundo A., Lima A., Ferreira R.B. Lupinus albus protein components inhibit MMP-2 and MMP-9 gelatinolytic activity in vitro and in vivo. Int J Mol Sci. 2021;22(24):13286.
  10. Lima A., Oliveira J., Saúde F., Mota J., Ferreira R.B. Proteins in soy might have a higher role in cancer prevention than previously expected: soybean protein fractions are more effective MMP-9 inhibitors than non-protein fractions, even in cooked seeds. Nutrients 2017;9(3):201.
  11. Safavi F., Rostami A. Role of serine proteases in inflammation: Bowman–Birk protease inhibitor (BBI) as a potential therapy for autoimmune diseases. Expe Mol Pathol. 2012;93(3):428-433.
  12. Swapna B., Fathima K., Muwayyad H., Khanam M., Salma S., Harsha S., Gayas N. A study to assess the associated risk of developing cardiovascular diseases in chronic kidney disease. Cell Mol Biomed Rep. 2024;4(3):150-158.
  13. Duarte C.M., Mota J., Assunção R., Martins C., Ribeiro A.C., Lima A., Raymundo A., Nunes M.C., Ferreira R.B., Sousa I. New alternatives to milk from pulses: Chickpea and lupin beverages with improved digestibility and potential bioactivities for human health. Front Nutr. 2022;9:852907.
  14. Clemente A., del Carmen Arques M. Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World J Gastroenterol. 2014;20(30):10305-10315.
  15. Srikanth S., Chen Z. Plant protease inhibitors in therapeutics-focus on cancer therapy. Front Pharmacol. 2016;7:470.
  16. Kumar A., Singh B., Raigond P., Sahu C., Mishra U.N., Sharma S., Lal M.K. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Res Int. 2021;142:110193.
  17. Thudi M., Gaur P.M., Krishnamurthy L., Mir R.R., Kudapa H., Fikre A., Kimurto P., Tripathi S., Soren K.R., Mulwa R. Genomics-assisted breeding for drought tolerance in chickpea. Funct Plant Biol. 2014;41(11):1178-1190.
  18. Mirzaei A.R., Shakoory-Moghadam V. Bioinformatics analysis and pharmacological effect of Stevia rebaudiana in the prevention of type-2 diabetes. Cell Mol Biomed Rep. 2022:64-73.
  19. Alajaji S.A., El-Adawy T.A. Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. J Food Compos Anal. 2006;19(8):806-812.
  20. Mathew S.E., Shakappa D., Rengel Z. A review of the nutritional and antinutritional constituents of chickpea (Cicer arietinum) and its health benefits. Crop Pasture Sci. 2022;73(4):401-414.
  21. Gupta R.K., Gupta K., Sharma A., Das M., Ansari I.A., Dwivedi P.D. Health risks and benefits of chickpea (Cicer arietinum) consumption. J Agric Food Chem. 2017;65(1):6-22.
  22. Sumanth N., Soumya P., Tabassum A., Mamatha P., Yamini G., Meghamala K., Pravalika G. A study to assess the co-morbidities and complications of polycystic ovarian syndrome. Cell Mol Biomed Rep. 2023;3(2):107-113.
  23. Gopalan R., Gracias D., Madhavan M. Serum lipid and lipoprotein fractions in bengal gram and biochanin a induced alterations in atherosclerosis. Indian Heart J. 1991;43(3):185-189.
  24. Zahradka P., Wright B., Weighell W., Blewett H., Baldwin A., O K., Guzman R.P., Taylor C.G. Daily non-soy legume consumption reverses vascular impairment due to peripheral artery disease. Atherosclerosis 2013;230(2):310-314.
  25. Gupta N., Gautam A.K., Bhagyawant S.S. Biochemical characterisation of lectin from wild chickpea (Cicer reticulatum L.) with potential inhibitory action against human cancer cells. J Food Biochem. 2019;43(2):e12712.
  26. Bello M., Tolaba M.P., Aguerre R.J., Suarez C. Modeling water uptake in a cereal grain during soaking. J Food Engin. 2010;97(1):95-100.
  27. Shittu T.A., Olaniyi M., Oyekanmi A., Okeleye K. Physical and water absorption characteristics of some improved rice varieties. Food Bioproc Technol. 2012;5:298-309.
  28. Montanuci F.D., Jorge L.M.d.M., Jorge R.M.M. Kinetic, thermodynamic properties, and optimization of barley hydration. Food Sci Technol. 2013;33:690-698.
  29. Altmäe S., Stavreus-Evers A., Ruiz J.R., Laanpere M., Syvänen T., Yngve A., Salumets A., Nilsson T.K. Variations in folate pathway genes are associated with unexplained female infertility. Fertil Steril. 2010;94(1):130-137.
  30. Lucock M. Folic Acid: Nutritional Biochemistry, Molecular Biology, and Role in Disease Processes. Mol Genet Metabol. 2000;71(1):121-138.
  31. Gmyrek G.B., Sozanski R., Jerzak M., Chrobak A., Wickiewicz D., Skupnik A., Sieradzka U., Fortuna W., Gabrys M., Chelmonska-Soyta A. Evaluation of monocyte chemotactic protein-1 levels in peripheral blood of infertile women with endometriosis. Eur J Obstet Gynecol Reprod Biol. 2005;122(2):199-205.
  32. Thaler C.D., Epel D. Nitric oxide in oocyte maturation, ovulation, fertilization, cleavage and implantation: a little dab'll do ya. Curr Pharmaceut Des. 2003;9(5):399-409.
  33. Agarwal A., Gupta S., Sharma R.K. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:1-21.
  34. Hussein M.R. Apoptosis in the ovary: molecular mechanisms. Human Reprod Update 2005;11(2):162-178.
  35. Forges T., Monnier-Barbarino P., Alberto J., Gueant-Rodriguez R., Daval J., Gueant J. Impact of folate and homocysteine metabolism on human reproductive health. Hum Reprod Update 2007;13(3):225-238.
  36. Yamada K., Strahler J.R., Andrews P.C., Matthews R.G. Regulation of human methylenetetrahydrofolate reductase by phosphorylation. Proc Natl Acad Sci USA 2005;102(30):10454-10459.
  37. Frosst P., Blom H., Milos R., Goyette P., Sheppard C.A., Matthews R., Boers G., Den Heijer M., Kluijtmans L., Van Den Heuve L. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature Gen. 1995;10(1):111-113.
  38. Harmon D., Woodside J., Yarnell J., McMaster D., Young I., McCrum E., Gey K., Whitehead A., Evans A. The common ‘thermolabile’variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia. QJM: An Int J Med. 1996;89(8):571-578.
  39. López‐Escobar B., Wlodarczyk B.J., Caro‐Vega J., Lin Y., Finnell R.H., Ybot‐González P. The interaction of maternal diabetes with mutations that affect folate metabolism and how they affect the development of neural tube defects in mice. Dev Dynam. 2019;248(10):900-917.
  40. Li D., Yang J., Yang Y., Liu J., Li H., Li R., Cao C., Shi L., Wu W., He K. A Timely Review of Cross-Kingdom Regulation of Plant-Derived MicroRNAs. Front Genet. 2021;12.
  41. Sun M., Xu S., Mei Y., Li J., Gu Y., Zhang W., Wang J. MicroRNAs in Medicinal Plants. Int J Mol Sci. 2022;23(18):10477.
  42. Patel M., Patel S., Mangukia N., Patel S., Mankad A., Pandya H., Rawal R. Ocimum basilicum miRNOME revisited: A cross kingdom approach. Genomics 2019;111(4):772-785.
  43. Avsar B., Zhao Y., Li W., Lukiw W.J. Atropa belladonna expresses a microRNA (aba-miRNA-9497) highly homologous to homo sapiens miRNA-378 (hsa-miRNA-378); both miRNAs target the 3′-untranslated region (3′-UTR) of the mRNA encoding the neurologically relevant, zinc-finger transcription factor ZNF-691. Cell Mol Neurobiol. 2020;40(1):179-188.
  44. Gadhavi H., Patel M., Mangukia N., Shah K., Bhadresha K., Patel S.K., Rawal R.M., Pandya H.A. Transcriptome-wide miRNA identification of Bacopa monnieri: a cross-kingdom approach. Plant Signal Behav. 2020;15(1):1699265.
  45. Vashisht I., Mishra P., Pal T., Chanumolu S., Singh T.R., Chauhan R.S. Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa. Planta 2015;241(5):1255-1268.
  46. Mishra A.K., Duraisamy G.S., Matoušek J., Radisek S., Javornik B., Jakse J. Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection. BMC Genomics 2016;17(1) 919.
  47. Puzey J.R., Kramer E.M. Identification of conserved Aquilegia coerulea microRNAs and their targets. Gene 2009;448(1):46-56.
  48. Kanwal N., Al Samarrai O.R., Al-Zaidi H.M.H., Mirzaei A.R., Heidari M.J. Comprehensive analysis of microRNA (miRNA) in cancer cells. Cell Mol Biomed Rep. 2023;3(2):89-97.
  49. Mirzaei A.R., Fazeli F. Bioinformatics analysis of microtubule-associated protein-1 light chain 3 (MAP1LC3A) and (BECN1) genes in autophagy. Cell Mol Biomed Rep 2022;2(3):129-137.
  50. Sasani S., Rashidi Monfared S., Mirzaei A.R. Identification of some Echinophora platyloba miRNAs using computational methods and the effect of these miRNAs in the expression of TLN2 and ZNF521 genes in different human body organs. Cell Mol Biomed Rep. 2024;4(1):43-53.
  51. Sunkar R., Li Y.-F., Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17(4):196-203.
  52. Trindade I., Capitão C., Dalmay T., Fevereiro M.P., Santos D.M.d. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 2010;231:705-716.
  53. Khraiwesh B., Zhu J.-K., Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 2012;1819(2):137-148.
  54. Li B., Duan H., Li J., Deng X.W., Yin W., Xia X. Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol. 2013;81:525-539.
  55. Zhou L., Liu Y., Liu Z., Kong D., Duan M., Luo L. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot. 2010;61(15):4157-4168.
  56. Zhou Z.S., Zeng H.Q., Liu Z.P., Yang Z.M. Genome‐wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ. 2012;35(1):86-99.
  57. Zeng F., Qiu B., Wu X., Niu S., Wu F., Zhang G. Glutathione-mediated alleviation of chromium toxicity in rice plants. Biol Trace Elem Res. 2012;148:255-263.
  58. Pant B.D., Musialak-Lange M., Nuc P., May P., Buhtz A., Kehr J., Walther D., Scheible W.-R.d. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol. 2009;150(3):1541-1555.
  59. Vacheron J., Desbrosses G., Bouffaud M.-L., Touraine B., Moënne-Loccoz Y., Muller D., Legendre L., Wisniewski-Dyé F., Prigent-Combaret C. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. 2013;4:356.
  60. Yang J., Kloepper J.W., Ryu C.-M. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 2009;14(1):1-4.
  61. Navarro L., Dunoyer P., Jay F., Arnold B., Dharmasiri N., Estelle M., Voinnet O., Jones J.D. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 2006;312(5772):436-439.
  62. Timmusk S., Wagner E.G.H. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact. 1999;12(11):951-959.
  63. Vannini C., Locatelli F., Bracale M., Magnani E., Marsoni M., Osnato M., Mattana M., Baldoni E., Coraggio I. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J. 2004;37(1):115-127.
  64. Wang W., Shi T., Ni X., Xu Y., Qu S., Gao Z. The role of miR319a and its target gene TCP4 in the regulation of pistil development in Prunus mume. Genome 2018;61(1):43-48.
  65. Cheng Z., Lei N., Li S., Liao W., Shen J., Peng M. The regulatory effects of MeTCP4 on cold stress tolerance in Arabidopsis thaliana: A transcriptome analysis. Plant Physiol Biochem. 2019;138:9-16.
  66. López-Galiano M.J., García-Robles I., González-Hernández A.I., Camañes G., Vicedo B., Real M.D., Rausell C. Expression of miR159 is altered in tomato plants undergoing drought stress. Plants 2019;8(7):201.
  67. Jatan R., Chauhan P.S., Lata C. Pseudomonas putida modulates the expression of miRNAs and their target genes in response to drought and salt stresses in chickpea (Cicer arietinum L.). Genomics 2019;111(4):509-519.
  68. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75(5):843-854.
  69. Detrait E.R., George T.M., Etchevers H.C., Gilbert J.R., Vekemans M., Speer M.C. Human neural tube defects: Developmental biology, epidemiology, and genetics. Neurotoxicol Teratol. 2005;27(3):515-524.
  70. Seligsohn U., Lubetsky A. Genetic susceptibility to venous thrombosis. New England J Med. 2001;344(16):1222-1231.
  71. Varga E., Kujovich J. Management of inherited thrombophilia: guide for genetics professionals. Clin Genet. 2012;81(1):7-17.
  72. Rosenblatt D.S., Lue-Shing H., Arzoumanian A., Low-Nang L., Matiaszuk N. Methylenetetrahydrofolate reductase (MR) deficiency: Thermolability of residual MR activity, methionine synthase activity, and methylcobalamin levels in cultured fibroblasts. Biochem Med Metabol Biol. 1992;47(3):221-225.
  73. Grant B.D., Donaldson J.G. Pathways and mechanisms of endocytic recycling. Nature Rev Mol Cell Biol. 2009;10(9):597-608.
  74. Cottam N.P., Ungar D. Retrograde vesicle transport in the Golgi. Protoplasma 2012;249:943-955.
  75. Kirchhausen T. Three ways to make a vesicle. Nature Rev Mol Cell Biol. 2000;1(3):187-198.
  76. Appenzeller-Herzog C., Hauri H.-P. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci. 2006;119(11):2173-2183.
  77. Vickers K.C., Remaley A.T. Lipid-based carriers of microRNAs and intercellular communication. Curr Opin Lipidol. 2012;23(2):91.
  78. Witwer K.W., Buzás E.I., Bemis L.T., Bora A., Lässer C., Lötvall J., Nolte-‘t Hoen E.N., Piper M.G., Sivaraman S., Skog J. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2013;2(1):20360.
  79. Steinfeld R., Grapp M., Kraetzner R., Dreha-Kulaczewski S., Helms G., Dechent P., Wevers R., Grosso S., Gärtner J. Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Human Genet. 2009;85(3):354-363.
  80. Rozen R. Molecular Biology of Methylenetetrahydrofolate Reductase (MTHFR): Interrelationships with Folic Acid, Homocysteine and Vascular Disease. In: Robinson, K. (eds) Homocysteine and Vascular Disease. Developments in Cardiovascular Medicine, 2000, vol 230. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1789-2_1681.
  81. Wan L., Li Y., Zhang Z., Sun Z., He Y., Li R. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl Psychiatry 2018;8(1):242.
  82. Undas A., Chojnowski K., Klukowska A., Łętowska M., Mital A., Młynarski W.M., Musiał J., Podolak-Dawidziak M., Sąsiadek M., Treliński J. Determination and interpretation of" MTHFR" gene mutations in gynecology and internal medicine. Polish Arch Intern Med. 2019;129(10):728-732.