Comparison of the Effect of Nano Curcumin on the Expression of some Drug Resistance Genes in Gram-negative and Gram-positive Bacteria

Document Type : Research Paper

Authors

Department of Microbiology, Science Faculty, Arak Branch, Islamic Azad University, Arak, Iran

Abstract

This research aims to investigate the molecular aspects of aminoglycoside resistance genes in Shigella dysenteriae obtained from children and evaluate their expression when influenced by curcumin nanoparticles. Also this study seeks to assess the impact of nano curcumin on the expression of multidrug-resistant efflux pump genes in Staphylococcus aureus using quantitative PCR (qPCR). The identification of the aad-E, aac-A, aph-D, and aph genes in Shigella dysenteriae was successfully confirmed using multiplex PCR techniques. Furthermore, the expression of the aad-E gene was examined in the presence of curcumin nanoparticles using real-time PCR. The study also monitored the expression of efflux pump genes (mexA, mexB, norA, norB) in Staphylococcus aureus when subjected to curcumin nanoparticles compatibility. In the analysis of Shigella dysenteriae isolates, it was found that 83.3% of the samples were positive for the aad-E gene. Additionally, six isolates were identified to carry the aac-A and aph-D genes, while one isolate possessed the aph gene. The expression of the aad-E gene exhibited a 1.03-fold change when treated with curcumin nanoparticle at a sub-minimal inhibitory concentration (SubMIC) of 128 µg/mL. The results indicate that Curcumin effectively reduced NorA gene expression in the efflux pump for over 82% of the Staphylococcus aureus samples examined. Furthermore, a decrease in NorA gene expression was observed in more than half of the Staphylococcus aureus strains tested. The prevalence of the aad-E gene in most Shigella dysentery isolates shows the necessity of effective treatment. The prevalence of the aad-E gene in the majority of Shigella dysenteriae isolates underscores the necessity for effective treatment strategies. Curcumin nanoparticles exhibit potential in reducing the expression of aminoglycoside resistance genes and significantly influence NorA gene expression, indicating its potential as an alternative treatment for drug-resistant strains.

Keywords

Main Subjects


  1. Jomehzadeh N., Afzali M., Ahmadi Kh., Salmanzadeh Sh., Mehr F.J. Antimicrobial resistance patterns and prevalence of integrons in Shigella species isolated from children with diarrhea in southwest Iran. Asian Pacific J Tropical Med. 2021; 14(2):78.
  2. Amini K., Konkori M. Identification of Broad-Spectrum Beta-lactamase CTX-M-2, CTX-M-8, and Ampc-dependent CMY Genes in Shigella sonnei Isolated from Pediatric Diarrhea Specimens by Multiplex-PCR and Antibiotic Resistance Pattern Determination. Iranian J Med Microbiology. 2020;14(5): 501-511.
  3. Zhi Sh., D Parsons B., Szelewicki J., Yuen Y.T.K., Fach P., Delannoy S., Li V., Ferrato Ch., B Freedman S., E Lee B., Pang X.L., Chui L. Identification of Shiga-Toxin-Producing Shigella Infections in Travel and Non-Travel Related Cases in Alberta, Canada. Toxins. 2021; 13(11):755.
  4. Ranjbar R., M Soltan Dallal M., Talebi M., R Pourshafie M. Increased isolation and characterization of Shigella sonnei obtained from hospitalized children in Tehran, Iran. J health Population Nutrition. 2008; 26(4): 426.
  5. Ke X., Gu B., Pan Sh., Tong M. Epidemiology and molecular mechanism of integron-mediated antibiotic resistance in Shigella. Archives of Microbiology. 2011; 193: 767-774.
  6. Kahsay A.G., Muthupandian S. A review on Sero diversity and antimicrobial resistance patterns of Shigella species in Africa, Asia and South America, 2001–2014. BMC Res Notes. 2016; 9(1): 1-6.
  7. Nasrollahi Boroujeni F., Deldar A.A. The Study of the Stable Expression of IpaB, the Virulence Factor in Shigella Sonnei, in Terms of Simultaneous Expression of Chaperone IpgC. Iran J Med Microbio. 2018; 12(4):260-268.
  8. Van Nhieu G.T., Sansonetti P.J. Mechanism of Shigella entry into epithelial cells. Current opinion in Microbiology. 1999; 2(1): 51-55.
  9. Afshari N., Bakhshi B., Mahmoudi aznaveh A., Fallah F., Rahbar M., Rafiei Tabatabaei S. Investigation of prevalence of Shigella sonnei in children with diarrhea admitted to two hospital Emam Khomeini and Milad in Tehran in 1391 with Antimicrobial susceptibility of isolates. Iran J Med Microbio. 2016; 10(2): 16-22.
  10. Muthuirulandi Sethuvel D.P., Veeraraghavan B., Vasudevan K., Devanga Ragupathi N.K., Murugan D., Walia K., Anandan Sh. Complete genome analysis of clinical Shigella strains reveals plasmid pSS1653 with resistance determinants: a triumph of hybrid approach. Gut Pathogens. 2019; 11(1):1-8.
  11. Ranjbar R., Farahani A. Shigella: antibiotic-resistance mechanisms and new horizons for treatment. Infection and Drug Resistance. 2019; 3137-3167.
  12. Soleimani N., Molecular Biology of Aminoglycoside and Relationship of Aminoglycoside Modifying Enzymes with Altering Resistance. Alborz Uni Med J. 2017; 6(4): 227-240.
  13. Silva P.R., Palma J.M., Souza N.R., de Moura H.M. Isolation and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli found in chilled chicken carcasses in the Federal District Region and surrounding areas. Semin. Ciênc. Agrár. 2019; 40:2247-2260.
  14. Garneau-Tsodikova S., Labby K.J. Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. Medchemcomm. 2016; 7(1): 11-27.
  15. Chopra H., Dey P.S., Das D., Bhattacharya T., Shah M., Mubin S., Peregrine Maishu S., Akter R., Rahman Md.H., Karthika Ch., Murad W., Qusty N., Qusti S., et al. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules. 2021; 26(16): 4998.
  16. Gopal J., Muthu M., Chun S.C. One-step, ultrasonication-mobilized, solvent-free extraction/synthesis of nanocurcumin from turmeric. RSC Advances. 2015; 5(60): 48391-48398.
  17. Rai M., Ingle A.P., Pandit R., Paralikar P., Anasane N., Dos Santos C.A. Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities. Expert Review of Anti-infective Therapy. 2020; 18(4): 367-379.
  18. Sharifi S., Fathi N., Memar M.Y., Hosseiniyan Khatibi S.M., Khalilov R., Negahdari R., Zununi Vahed S., Maleki Dizaj S. Anti‐microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytotherapy Res. 2020;34(8): 1926-1946.
  19. Mireshghi N, Jafari Z, Shojaei Sadi B. Molecular study of Shigella dysenteriae Aminoglycoside Resistance Genes Isolated from Children and its Expression Under the Influence of Curcumin Nanoparticle. Iran J Med Microbiol 2023; 17 (1) :50-57.
  20. Negi P.S., Jayaprakasha G.K., Jagan Mohan Rao L., Sakariah K.K. Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. J Agric Food Chem. 1999;47(10):4297-300.
  21. Apisariyakul A., Vanittanakom N., Buddhasukh D. Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J Ethnopharmacology. 1995;49(3):163-9.
  22. Arora R.B., Kapoor V., Basu N., Jain A.P. Anti- inflammatory studies on Curcuma longa (turmeric). The Indian J Med Res. 1971;59(8):1289-95.
  23. Kuo J.J., Chang H.H., Tsai TH., Lee T.Y. Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis. Inter J Molecular Medicine. 2012;30(3):673-9.
  24. Lim G.P., Chu T., Yang F., Beech W., Frautschy S.A., Cole G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. The Journal of neuroscience: the official J the Soci Neurosci. 2001;21(21):8370-7.
  25. Kanitkar M., Gokhale K., Galande S., Bhonde R.R. Novel role of curcumin in the prevention of cytokine-induced islet death in vitro and diabetogenesis in vivo. British J Pharma. 2008;155(5):702-13.
  26. Ma C., Ma Z., Fu Q., Ma S. Curcumin attenuates allergic airway inflammation by regulation of CD4+CD25+ regulatory T cells (Tregs)/Th17 balance in ovalbumin-sensitized mice. Fitoterapia. 2013;87:57-64.
  27. Mei X., Xu D., Xu S., Zheng Y., Xu S. Novel role of Zn(II)-curcumin in enhancing cell proliferation and adjusting proinflammatory cytokine-mediated oxidative damage of ethanol- induced acute gastric ulcers. Chemico-Biologicalinteractions. 2012;197(1):31-9.
  28. Adahoun M.A., Al-Akhras M.A., Jaafar M.S., Bououdina M. Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles. Artif. Cells Nanomed. Biotechnol. 2016, 45, 98–107.
  29. Jaberi S., Fallah F., Hashemi A., Karimi A.M., Azimi L. Inhibitory Effects of Curcumin on the    Expression of NorA Efflux Pump and Reduce Antibiotic Resistance in Staphylococcus aureus. J Pure Appl Microbiol. 2018;12(1):95-102.
  30. Sabouni F., Mahmoudi S., Bahador A., Pourakbari B., Sadeghi R.H., Ashtiani M.T., et al. Virulence Factors of Staphylococcus aureus Isolates in an Iranian Referral Children’s Hospital. Osong Public Health Res Perspect. 2014; 5(2):96-100.
  31. You Y.O., Choi N.Y., Kang S.Y., Kim K.J. Antibacterial Activity of Rhus javanica against Methicillin-   Resistant Staphylococcus aureus. Evid Based Complement Alternat Med. 2013; 2013:549207.
  32. Beheshti M., Talebi M., Ardebili A., BahadorA., Lari A.R. Detection of AdeABC efflux pump genes in tetracycline-resistant Acinetobacter baumannii isolates from burn and ventilator- associated pneumonia patients. J Pharm Bioallied Sci. 2014; 6(4):229-32.
  33. Deng X., Sun F., Ji Q., Liang H., Missiakas D., Lan L., et al. Expression of multidrug resistance efflux pump gene norA is iron responsive in Staphylococcus aureus. J Bacteriol. 2012; 194(7):1753-62.
  34. Kalia N.P., Mahajan P., Mehra R., Nargotra A., Sharma J.P., Koul S., et al. Capsaicin, a novel inhibitor      of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus.
  35. Zhang Z., Liao L., Moore J., Wu T. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem. 2009; 113(1):160-165.
  36. Kareem S.M., Mahmood S.S., Hindi N.K. Effects of Curcumin and Silymarin on the Shigella dysenteriae and Campylobacter jejuni In vitro. J Gastrointestinal Cancer. 2020; 51: 824-828.
  37. Clinical and Laboratory Standards Institute(CLSI). Performance standards for antimicrobial susceptibilitytesting; Twenty-second Informational Supplement Wayne, Pennsylvania. USA: CLSI; 2015.
  38. Moghadamtousi S.Z., Kadir H.A., Hassandarvish P., Tajik H., Abubakar S., Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int. 2014;2014:186864.
  39. Apisariyakul A., Vanittanakom N., Buddhasukh D. Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J Ethnopharmacology. 1995;49(3):163-9.
  40. Ahmadzadeh Sh., Bayat M., Amini  K., Molecular study of tetracycline resistance genes in Shigella sonnei isolated from clinical samples and the effect of spring grass extract on the expression of resistance gene by Real time. medical journal of mashhad university of medical sciences. 2021; 64(1):2340-2352.
  41. Hejazi R., Nasr Esfahani M., Maleki M., Sedaghatfar E.Susceptibility assessment and genetic population structure associated with Rhizoctonia solani AG3-PT-Potato stem canker disease. Physiological and Molecular Plant Pathology. 2022; 119: 101835.
  42. Kwak Y.G., Truong-Bolduc Q.C., Bin Kim H., Song K.H., Kim E.S., Hooper D.C. Association of norB overexpression and fluoroquinolone resistance in clinical isolates of Staphylococcus aureus from Korea. J Antimicrob Chemother. 2013; 68(12):2766-72.
  43. Udou T. Dissemination of nosocomial multiple-aminoglycoside-resistant Staphylococcus aureus caused by horizontal transfer of the resistance determinant (aacA/aphD) and clonal spread of resistant strains. American J Infection Control. 2004; 32(4): 215-219.
  44. Alizadeh Sarvandani S., Amini K., Saffarian P. Evaluation of antimicrobial activity of Curcumin nanoparticles on the gene expression of the enterococcal surface protein, Esp, involved in biofilm formation of Enterococcus Faecalis. Razi J Med Sci. 2019; 26(9): 39-46.
  45. De R., Kundu P., Swarnakar S., Ramamurthy T., Chowdhury A., Nair G.B., Mukhopadhyay A.K. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrobial Agents Chemother. 2009; 53(4):1592-1597.
  46. Sayers E.W., Agarwala R., E Bolton E., Brister J.R., Canese K., Clark K., Connor R., Fiorini N., Funk K., Hefferon T., Holmes J.B, Kim S., Kimchi A., Kitts P.A., Lathrop S., Lu Z., Madden Th.L., et al., Database resources of the national center for biotechnology information. Nucleic Acids Res. 2012; 40(D1): D13-D25.
  47. Pourmand M.R., Yousefi M., Salami S.A., Amini M. Evaluation of expression of NorA efflux pump in ciprofloxacin resistant Staphylococcus aureus against hexahydroquinoline derivative by real-time PCR. Acta Med Iran. 2014; 52(6):424-9.
  48. Strommenger B., Kettlitz Ch., Werner G., Witte W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J Clinical Microbio. 2003; 41(9): 4089-4094.
  49. Ostadi Y., Rezai A., Moghadampour M., Faghri J. The involvement of drug efflux system in amikacin resistance of multiple drug resistant Acintobacter baumannii isolates in Isfahan, Iran. J Med Bacteriology. 2019; 8(1-2): 13-20.
  50. Shariati A., Asadian E., Fallah F., Azimi T., Hashemi A., Sharahi  J.Y., Moghadam M.T. Evaluation of Nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infection in Tehran, Iran. Infection and Drug Resistance. 2019: 2223-2235.
  51. Nandhini P., Kumar P., Mickymaray S., Alothaim A., Somasundaram J., Rajan M. Recent Developments in Methicillin- Resistant Staphylococcus aureus (MRSA) Treatment: A Review. Antibiotics. 2022; 11: 606.
  52. Jabir M.S., Rashid T.M., Nayef U.M., Albukhaty S., AlMalki F.A., Albaqami J., Sulaiman G.M. Inhibition of Staphylococcus aureus α‐hemolysin production using nanocurcumin capped Au@ ZnO nanocomposite. Bioinorganic Chem Applications. 2022;(1): 2663812.
  53. Tyagi P., Singh M., Kumari H., Kumari A., Mukhopadhyay K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One . 2015;10(3)
  54. Zahmatkesh Zakariaei H., Mirpour M., Zamani H., Rasti B. Antimicrobial Effects of Samarium Oxide Nanoparticles Fabricated by Curcumin on Multidrug-resistant Pseudomonas aeruginosa & Staphylococcus aureus. J Microbial Biology. 2024; 13(50): 81-103.
  55. Shlar I., Poverenov E., Vinokur Y., Horev B., Droby S., Rodov V. High-Throughput Screening of Nanoparticle-Stabilizing Ligands: Application to Preparing Antimicrobial Curcumin Nanoparticles by Antisolvent Precipitation. Nanomicro Lett. 2015;7(1):68-79.
  56. Soumya K.R., Snigdha S., Sugathan S., Mathew J., Radhakrishnan E.K. Zinc oxide–curcumin nanocomposite loaded collagen membrane as an effective material against methicillin-resistant coagulase-negative Staphylococci. 3 Biotech. 2017;7:238.
  57. Adeyemi O.S., Obeme-Imom J.I., Akpor B.O., Rotimi D., Batiha G.E.-S., Owolabi A. Altered redox status, DNA damage and modulation of L-tryptophan metabolism contribute to antimicrobial action of curcumin. Heliyon. 2020;6:e03495.
  58. Freitas M.A., Pereira A.H., Pinto J.G., Casas A., Ferreira-Strixino J. Bacterial viability after antimicrobial photodynamic therapy with curcumin on multiresistant Staphylococcus aureus. Futur. Microbiol. 2019;14:739–748.
  59. Darmani H., Smadi E.A.M., Bataineh S.M.B. Blue light emitting diodes enhance the antivirulence effects of Curcumin against Helicobacter pylori. J Med Microbiol. 2020;69(4):617-624.
  60. Tavakoli Z., Sahebjamee H., Pishkar L., Alimadadi Z., Noorbazargan H., Mizaei A. Detection of efflux pump activity and gene expression among ciprofloxacin-resistant Staphylococcus aureus strains. J Microbial World. 2019:12: 294 – 304.
  61. Dariushy R., Ashrafi F. Effect of Curcumin Nanoparticles on Biofilm Gene Expression in Pseudomonas Aeruginosa. Res in Med. 2022; 46 (3) :95-104.
  62. Vatani E., Shayestehpour M., Motallebi M., Razmjoue D., Moosavi G.A., Khaledi A., Rahimi M. Antimicrobial Effect of Curcumin Nanoparticles and Ferulago angulate Boiss Extract Against Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated from Wound Infections. Bio Nano Sci. 2024; 1-9.‏
  63. Sintara K., Thong-Ngam D., Patumraj S,Klaikeaw N., Chatsuwan T. Curcumin suppresses gastric NF kappaB activation and macromolecular leakage in Helicobacter pylori- infected rats. World J. Gastroenterology: WJG. 2010;16(32):4039-46.
  64. Foryst-Ludwig A., Neumann M., Schneider- Brachert W., Naumann M. Curcumin blocks NF-Kappa B and the motogenic response in Helicobacter pylori-infected epithelial cells. Biochemical and Biophysical Res Communications. 2004;316(4):1065-72.
  65. Zaidi S.F., Yamamoto T., Refaat A., Ahmed K., Sakurai H., Saiki I., et al. Modulation of activation-induced cytidine deaminase by curcumin in Helicobacter pylori-infected gastric epithelial cells. Helicobacter. 2009;14(6):588-95.
  66. Di Mario F., Cavallaro L.G., Nouvenne A., Stefani N., Cavestro G.M., Iori V., et al. A curcumin-based 1-week triple therapy for eradication of Helicobacter pylori infection: something to learn from failure? Helicobacter. 2007;12(3):238-43.
  67. Kaur S., Modi N.H., Panda D., Roy N. Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ--a structural insight to unveil antibacterial activity of curcumin. European J. Med Chem. 2010;45(9):4209-14.
  68. Bellio P., Brisdelli F., Perilli M., Sabatini A., Bottoni C., Segatore B., et al. Curcumin inhibits the SOS response induced by levofloxacin in Escherichia coli. Phytomedicine: Inter J. Phytotherapy and Phytopharm. 2013.
  69. Deby-Dupont G., Mouithys-Mickalad A., Serteyn D., Lamy M., Deby C. Resveratrol and curcumin reduce the respiratory burst Of Chlamydia-primed THP-1 cells. Biochem Biophysical Res Communications. 2005;333(1):21-7.
  70. Ibrahim N.B., Hassan E., Elgendy S., Hassan H., Hassan A., El-Gindy N. IN- Vitro Evaluation of Nano Curcumin against Multi-drug Resistant Bacteria. Bulletin of Pharmaceutical Sci Assiut University. 2023; 46(1): 433-448.