Weed Control of Cuscuta by Silver Nanoparticle Phytosynthesis Extract of Rhazya stricta Plant

Document Type : Research Paper

Authors

1 Department of Agriculture, Technical and Engineering Faculty, Velayat University, Iranshahr, Iran

2 Department of Chemistry, Faculty of Basic Sciences, University of Sistan and Baluchestan, Zahedan, Iran

3 Department of Biology, Basic Sciences Faculty, University of Sistan and Baluchistan, Zahedan, Iran

Abstract

The study of Weed control of Cuscuta by silver nanoparticle photosynthesis extract of Rhazya stricta Decne. plant was conducted in two separate experiments as a completely randomized design in three replications in the Medicinal and Ornamental Plants Research Center of Sistan and Balochistan in 2022. The results of synthesizing these nanoparticles showed that the nanoparticles had a maximum absorption at a wavelength of 400-415 nm, an average size of 10-12 nm, and a spherical and uniform shape. The results of the effects of nanoparticle extracts on the germination and growth of Cuscuta weeds showed that 100% silver nanoparticle extract of R. stricta significantly decreased the germination percentage (50.66%), germination vigour (10.50) and germination rate (2.03) comparison with other treatments. The mean germination time was 2 days in control and increased to 4 days after applying 100% silver nanoparticle extract of R. stricta. Besides, rootlet length and plantlet length were affected by R. stricta extracts. The most reduction was related to 100% silver nanoparticle extract with 0.40 cm in rootlet length and 0.50 cm in plantlet length.  

Keywords

Main Subjects


  1. Yoshida S., Cui S., Ichihashi Y., Shirasu, K. The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 2016; 67: 643-667.
  2. Tešitel J. Functional biology of parasitic plants: A Review. Plant Ecol. Evol. 2016; 149: 5-20.
  3. The free Encyclopedia. Cuscuta.
  4. Saric-Krsmanovic M.M., Bozic D.M., Radivojevic L.M., Umiljendic J.S.G., Vrbnicanin S.P. Effect of Cuscuta campestris parasitism on the physiological and anatomical changes in untreated and herbicide-treated sugar beet. J. Environ Sci Health B. 2017; 52: 812-816.
  5. García M.A., Costea M., Kuzmina M., Stefanovic S. Phylogeny, character evolution, and biogeography of Cuscuta (dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences. Am. J. Bot. 2014;101: 670-690.
  6. Kim G., Westwood J.H. Macromolecule exchange in Cuscuta–host plant interactions. Curr Opin Plant Biol. 2015; 26: 20-25.
  7. Westwood J.H., Charudattan R., Duke S.O., Fennimore S.A., Marrone P., Slaughter D.C., Swanton C., Zollinger R. Weed Management in 2050: Perspectives on the Future of Weed Science. Weed Sci. 2018; 1-11.
  8. Bastiaan L., Zhao D.L., Denhollander N.G., Bamann D.T., Kruidhof H.M., Kropff M.J. Exploiting diversity to manage weeds in agro-ecosystems. In: Spiertz J.H.J., Struik P.C., van Laar H.H. (eds.) Scale and Complexity in Plant System Research. Gene-Plant-Crop Relat. 2007; 267-284.
  9. Sauerbon J., Muller-Stover D., Hershenhorn J. The role of biological control in managing parasitic weeds. J. Crop Prot. 2007; 26: 246-254.
  10. Mousavi S.R., Rezaei M. Nanotechnology in agriculture and food production. J. Appl. Environ. Biol. Sci. 2011; 1: 414-419
  11. Pokhrel L.R., Silva T., Dubey B., El Badawy A.M., Tolaymat T.M. Scheuerman P.R. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay. Sci. Total Environ. 2012; 426: 414-422.
  12. Pradas del Real A.E., Vidal V., Carriere M., Castillo-Michel H., Levard C. Chaurand, P. Silver nanoparticles and wheat roots: A complex interplay. Environ. Sci. Technol. 2017; 51: 5774-5782.
  13. Anwar N., Wahid J., Uddin J., Khan A., Shah M., Shah S.A. Phytosynthesis of polyethylene glycol methacrylate-hybridized gold nanoparticles from C. tuberculata: Their structural characterization and potential for in vitro growth in banana. In Vitro Cell Dev. Biol. 2021; 57: 248-260.
  14. Acharya P., Jayaprakasha G.K., Crosby K.M., Jifon J.L., Patil B.S. Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustain. Chem. Eng. 2019; 7 (17): 14580-14590.
  15. Ahmad N., Rab A., Sajid M., Ahmad N., Fazal H., Ali M. Sucrose-dependent production of biomass and low caloric Steviol glycosides in adventitious root cultures of Stevia rebaudiana (Bert.). Ind. Crops. Prod. 2021b; 164: 113382.
  16. Song K., Zhao D., Sun H., Gao J., Li S., Hu T. Green nanopriming: Responses of alfalfa (Medicago sativa L.) seedlings to alfalfa extracts capped and light-induced silver nanoparticles. BMC Plant BioL. 2022; 22: 323.
  17. Bukhari N.A., Al-Otaibi R.A., Ibhrahim I. Phytochemical and taxonomic evaluation of Rhazya stricta L. in Saudi Arabia. Saudi J. Biol. Sci. 2017; 24: 1513-1521.
  18. Alqarawi A.A., Hashem A., Kumar A., Al-Arjani A.B.F., Abd-Allah E.F., Dar B.A., Wirth S., Davranov K., Egamberdieva D. Allelopathic effects of the aqueous extract of Rhazya stricta on growth and metabolism of Salsola villosa. Plant Biosyst. 2018; 152: 1263-1273.
  19. Iqbal J., Zahra S., Ahmad M., Shah A., Hassan, W. Herbicidal Potential of Dryland Plants on Growth and Tuber Sproutingin Purple Nutsedge (Cyperus rotundus L.). Planta Daninha. 2018; 36.
  20. Al-Solami H.M. Larvicidal activity of plant extracts by inhibition of detoxification enzymes in Culex pipiens. J. King Saud Univ. Sci. 2021; 33: 101371.
  21. Azizian-Shermeh O., Valizadeh M., Taherizadeh M. Phytochemical investigation and phytosynthesis of eco-friendly stable bioactive gold and silver nanoparticles using petal extract of saffron (Crocus sativus L.) and study of their antimicrobial activities. Appl. Nanosci. 2020; 10: 2907-2920.
  22. Azizian-Shermeh O., Jalali-Nezhad A.A., Taherizadeh M. Facile, Low-cost and rapid phytosynthesis of stable and eco-friendly silver nanoparticles using Boerhavia elegans (Choisy) and study of their antimicrobial activities. J. Inorg. Organomet. Polym. Mater. 2021; 31: 279-291.
  23. Basiratnia E., Einali A., Azizian-Shermeh O. Biological Synthesis of Gold Nanoparticles from Suspensions of Green Microalga Dunaliella salina and Their Antibacterial Potential. J. Bionanosci. 2021; 11: 977-988.
  24. Azizian-Shermeh O., Einali A., Ghasemi A. Rapid biologically one-step synthesis of stable bioactive silver nanoparticles using Osage orange (Maclura pomifera L.) leaf extract and their antimicrobial activities. Adv. Powder Technol. 2017; 28 (12): 3164-3171.
  25. Bahador E., Einali A., Azizian-Shermeh O., Sangtarash M.H. Metabolic responses of the green microalga Dunaliella salina to silver nanoparticles-induced oxidative stress in the presence of salicylic acid treatment. Aquat. Toxicol. 2019; 217: 105356.
  26. Panwar P., Bhardwaj S.D. Handbook of practical forestry, Agrobios (India). 2005; 191.
  27. Kulkarni M.G., Street R.A., Staden J.V. Germination and seedling growth requirements for propagation of Diosscorea dregeana (Kunth) Dur. and Schinz-A tuberous medicinal plant, S Afr J Bot. 2007; 33: 131-137.
  28. ISTA Handbook on Seedling Evaluation. 3rd Ed. Zurich, International Seed Testing Association. 2009;117.
  29. Shenya D.S., Mathewa J., Philip D. Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta A Mol Biomol Spectrosc. 2011; 79: 254-262.
  30. Shankar S.S., Rai A., Ahmad A., Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadira chtaindica L.) leaf broth. J. Colloid Interface Sci. 2002; 275: 496-502.
  31. Dwivedi A.G., Gopol K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A: Physicochem. Eng. Asp. 2010; 360: 27-33.
  32. Philip D. Rapid Green synthesis of spherical gold nanoparticles using Mangifera indica Leaf. Spectrochim. Acta Mol. Biomol. Spectrosc. 2010; 77: 807-810.
  33. Khan M., Musharaf S., Ibrar M., Hussain F. Allelopathic effects of Rhazya stricta dence on seed germination and seedling growth of Pennisetum typhoides. Proc. Int. Techno. Edu. Environ. Conf. (c). Afr. Soc. Sci. Res. (ASSR), 2015.
  34. Hussain F., Niaz F., Jabeen M., Burni T. Allelopathic potential of Broussonetia papyrifera Vent. Pak. J. Agric. Sci. 2004; 10(2): 69-77.
  35. Inderjit M., Duke S. Ecophysiological aspects of allelopathy. Planta J. 2003; 217 (4): 529-539.
  36. Singh H.P., Batish D.R., Pandher J.K., Kohli R.K. Assessment of allelopathic properties of Parthenium hysterophorus residues. Agr. Ecosyst. Environ. 2003; 95: 537-541.
  37. Nokhodi F., Bandani, E., Kooshki H., Eftekhari M., Mahmoudi R., Mansouri M., Jafari A.A. Medicinal plant Scrophularia striata evaluation anti-parasitic effects on Leishmania major: In vitro and In vivo Study. Biosci., Biotech. Res. Asia. 2014; 11 (2): 627-634.
  38. Nofouzi K., Mahmudi R., Tahapour K., Amini E., Yousefi K. Verbascum speciosum Methanolic Extract: Phytochemical Components and Antibacterial Properties. J. Essent. Oil-Bear. Plants. 2016; 19 (2): 499-505.
  39. Allahyari S., Pakbin B., Amani Z., Mahmoudi R., Hamidiyan G., Peymani A., Qajarbeygi P., Mousavi S. Antiviral activity of Phoenix dactylifera extracts against herpes simplex virus type 1: an animal study. Comp Clin Pathol. 2021; 30: 945.951.
  40. Khan M.A., Marwat K.B., Hassan Z. Allelopathic potential of some multipurpose trees species (MPTS) on the wheat and some of its associate’s weeds. Int. J. Biol. Biotec. 2004; 1(3): 275-278.