Optimization of Growth and Biochemical Production in Dracocephalum moldavica L. through Biochar and Salicylic Acid Application in a Pot Experiment

Document Type : Research Paper

Authors

1 Department of Horticultural science engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin Iran

2 Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran

Abstract

This study examines the impact of biochar and salicylic acid on the morphological and biochemical characteristics of  Moldavian balm (Dracocephalum moldavica L). A pot experiment was conducted usig a factorial experiment basd on CRD with two factors: salicylic acid applied as a foliar spray at concentrations of 0, 0.5, and 1 mM, and biochar incorporated into the soil at 0, 50, and 100 g/kg in 3 replication at scientific greenhouse at Imam Khomeini International University. The findings reveal that salicylic acid significantly promotes plant growth, with notable increases in height, branching, and biomass, and boosts chlorophyll a and b, essential oil percentage, carotenoids, total phenolic content (TPC), total flavonoid content (TFC), and DPPH radical scavenging activity, especially at the 1 mM concentration. Biochar also positively influences plant height, branching, and biomass, and increases chlorophyll, essential oil percentage, carotenoid content, and TFC, although it has no significant effect on TPC or essential oil composition. The combined application of biochar and salicylic acid produces a synergistic effect, with the highest treatment combinations (1 mM & 100 g/kg) yielding the most significant improvements. Essential oil analysis indicates that salicylic acid markedly enhanced main components such as geraniol, geranial, geranyl acetate, and borneol, while biochar's influence on these compounds is minimal. The interaction between biochar and salicylic acid is particularly effective in boosting chlorophyll content and essential oil composition. These results underscore the potential of integrating biochar and salicylic acid to optimize plant growth and secondary metabolite production in Moldavian balm.

Keywords

Main Subjects


  1. Amin T., Chauhan R., Varma A., Tiwari A. Dracocephalum moldavica L.: A review on its traditional uses, phytochemistry, and pharmacological properties. J. Ethnopharmacol. 2020;254:112490.
  2. Aćimović M., Sikora V., Brdar-Jokanović M., Kiprovski B., Popović V., Koren A. Dracocephalum moldovica: Cultivation, chemical composition, and biological activity. J. Agron. Technol. Engin. Manag. (JATEM). 2019;2:153-167.
  3. Acimovic M., Šovljanski O., Šeregelj V., Pezo L., Zheljazkov V.D., Ljujic J. Chemical composition, antioxidant, and antimicrobial activity of Dracocephalum moldavica L. essential oil and hydrolate. Plants. 2022;11:941.
  4. Lehmann J., Cowie A., Masiello C.A., Kammann C., Woolf D., Amonette J.E. Biochar in climate change mitigation. Nat. Geosci. 2021;14:883-892.
  5. Jeffery S., Verheijen F.G., van der Velde M., Bastos A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2017;144:175-187.
  6. Akhtar S.S., Andersen M.N., Liu F. Biochar enhances yield and quality of tomato under reduced irrigation. Agric. Water Manag. 2021;219:1-12.
  7. Ding Y., Liu Y., Liu S., Li Z., Tan X., Huang X. Biochar to improve soil fertility: A review. Agron. Sustain. Develop. 2016;36:36.
  8. Zhang H., Kim J.D., Suzuki T. Evaluating the benefits of biochar on soil fertility and crop productivity in a cold climate. Agronomy 2019;9:295.
  9. Ramos-Sotelo H., Figueroa-Pérez M.G. Use of salicylic acid during cultivation of plants as a strategy to improve its metabolite profile and beneficial health effects. Italian J. Food Sci. 2023;35:79-90.
  10. Hayat Q., Hayat S., Irfan M., Ahmad A. Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot. 2018;68:14-25.
  11. Ghilavizadeh A., Hadidi Masouleh E., Zakerin H.R., Valadabadi S.A.R., Sayfzadeh S., Yousefi M. Influence of salicylic acid on growth, yield and macro-elements absorption of fennel (Foeniculum vulgare Mill.) under water stress. J. Med. Plants and By-prod. 2019;8:67-75.
  12. Ali B. Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatal. Agric. Biotechnol. 2021;31:101884.
  13. Jahan M.S., Wang Y., Shu S., Zhong M., Chen Z., Wu J. Exogenous salicylic acid increases the heat tolerance in tomatos (Solanum lycopersicum L) by enhancing photosynthesis efficiency and improving the antioxidant defense system through scavenging of reactive oxygen species. Sci. Hort. 2019;247:421-429.
  14. Khalid M., Hassani D., Bilal M., Asad F., Huang D., Yang W. The application of biochar and salicylic acid alleviates salt stress in saffron by modulating physiological traits and antioxidative enzymes. Sci. Hort. 2021;284:110123.
  15. Wellburn A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. J. Plant Physiol. 1994;144:307-313.
  16. Zarrabi M., Asghari B., Maryamabadi A., Mohebbi G., Rashvand S. Phytochemical properties and inhibitory and antioxidant effects of the decoction, infusion, and hydro-alcoholic extract of Nepeta racemosa on α-amylase and α-glucosidase. Iran. South Med. J. 2019;22:90-105.
  17. Asghari B., Mafakheri S., Zengin G., Dinparast L., Bahadori M.B. In-depth study of phytochemical composition, antioxidant activity, enzyme inhibitory and antiproliferative properties of Achillea filipendulina: A good candidate for designing biologically active food products. J. Food Meas. Charact. 2020;14:2196-2208.
  18. Graber E.R., Meller Harel Y., Kolton M., Cytryn E., Silber A., David D.R. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil 2019;337:481-496.
  19. Rithichai P., Jirakiattikul Y., Nambuddee R., Itharat A. Effect of salicylic acid foliar application on bioactive compounds and antioxidant activity in Holy Basil (Ocimum sanctum L.). Int. J. Agron. 2024;2024:8159886.
  20. Batista V.C.V., Pereira I.M.C., de Oliveira Paula-Marinho S., Canuto K.M., Pereira R.D.C.A., Rodrigues T.H.S. Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant Egletes viscosa. Environ. Exp. Bot. 2019;167:103870.
  21. Gorni P.H., Pacheco A.C., Moro A.L., Silva J.F.A., Moreli R.R., de Miranda G.R. Salicylic acid foliar application increases biomass, nutrient assimilation, primary metabolites and essential oil content in Achillea millefolium L. Sci. Hortic. 2020;270:109436.
  22. Zeeshan M., Ahmad W., Hussain F., Ahmad W., Numan M., Shah M., Ahmad I. Phyto stabilization of heavy metals in soil with biochar applications, the impact on chlorophyll, carotene, soil fertility, and tomato crop yield. J. Clean. Prod. 2020;255:120318.
  23. Fahad S., Hussain S., Bano A., Saud S., Hassan S., Shan D. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment. Environ. Sci Pollut. Res. 2017;24:1-22.
  24. Jahani F., Tohidi-Moghadam H.R., Larijani H.R., Ghooshchi F., Oveysi M. Influence of zinc and salicylic acid foliar application on total chlorophyll, phenolic components, yield and essential oil composition of peppermint (Mentha piperita L.) under drought stress condition. Arabian J. Geosci. 2021; 14:1-12.
  25. García-Sánchez M., Garcia P.C., Rivera-Ortíz A., González-López Ó., Teixeira da Silva J.A., Alcántara E. Influence of biochar on the performance of woody and horticultural plants: A review. Plant Physiol. Biochem. 2020;152:181-199.
  26. Grzeszczuk M., Salachna P., Meller E. Changes in photosynthetic pigments, total phenolic content, and antioxidant activity of Salvia coccinea Buc’hoz Ex Etl. induced by exogenous salicylic acid and soil salinity. Molecules 2018;23:1296.
  27. Skrypnik L., Feduraev P., Styran T., Golovin A., Katserov D., Nebreeva S., Maslennikov P. Biomass, phenolic compounds, essential oil content, and antioxidant properties of Hyssop (Hyssopus officinalis L.) grown in hydroponics as affected by treatment type and selenium concentration. Horticulture 2022;8:1037.
  28. Estaji A., Niknam F. Foliar salicylic acid spraying effect on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Agric. Water Manag. 2020;234:106116.
  29. Li A., Sun X., Liu L. Action of salicylic acid on plant growth. Front. Plant Sci. 2022;13:878076.
  30. Qambrani N.A., Rahman M.M., Won S., Shim S., Ra C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renew. Sustain. Energ. Rev. 2017;79:255-273.
  31. Pérez-Jiménez J., Serrano J., Tabernero M., Arranz S., Díaz-Rubio M.E., García-Diz L., et al. Antioxidant capacity of dietary polyphenols determined by ABTS and DPPH radical scavenging assays: An overview of results and methodological approaches. Food Sci. Technol. Int. 2008;43:185-191.
  32. He Y., Yu H., Bao W., Liu W., Zhang D. Application of biochar and plant growth-promoting rhizobacteria reduced the oxidative stress in plants in salt-affected soils. Appl. Soil Ecol. 2018;131:25-33.
  33. Fakhri , Sayfzadeh S., Sarajooghi M., Valad Abadi A., Hadidi Masouleh E. The effect of biochar application and planting pattern on the physiological and biochemical traits of garden Thyme (Thymus vulgaris L.) at different levels of irrigation. J. Med. Plants and By-Prod. 2024;13:999-1015.
  34. Farhangi-Abriz S., Torabian S. Biochar increased plant growth-promoting rhizobacteria (PGPR) effects on basil (Ocimum basilicum) essential oil content. Plant Physiol. Biochem. 2017;110:158–164.
  35. Verheijen F., et al. Biochar application to soils – A critical scientific review of effects on soil properties, processes and functions. European Commission. 2010;172:3-16.
  36. Fascella G., D’Angiolillo F., Ruberto G., Napoli, E. Agronomic performance, essential oils and hydrodistillation wastewaters of Lavandula angustifolia grown on biochar-based substrates. Indust. Crop Prod. 2020;154:112733.
  37. Kulak M., Jorrín-Novo JV., Romero-Rodriguez MC., Yildirim ED., Gul F., Karaman, S. Seed priming with salicylic acid on plant growth and essential oil composition in basil (Ocimum basilicum L.) plants grown under water stress conditions. Indust. Crop Prod. 2021;161:113235.
  38. Choudhary S., Zehra A., Mukarram M., Wani, KI., Naeem M., Khan MMA., Aftab T. Salicylic acid-mediated alleviation of soil boron toxicity in Mentha arvensis and Cymbopogon flexuosus: Growth, antioxidant responses, essential oil contents and components. Chemosphere. 2021;276:130153.
  39. Pan R., Geng Y., Zhang J., Yang F., Zhao X., Gao H. Salicylic acid promotes terpenoid biosynthesis in medicinal plants. Plant Sci. 2019;282:161-168.
  40. Bistgani Z.E., Siadat S.A., Bakhshandeh A., Pirbalouti A.G., Hashemi M., Maggi F. Application of salicylic acid and biochar improves yield, essential oil and composition in Thymus vulgaris. Indust. Crop Prod. 2019;127:195-202.
  41. Haydari M., Maresca V., Rigano D., Taleei A., Shahnejat-Bushehri A.A., Hadian J., et al. Salicylic acid and melatonin alleviate the effects of heat stress on essential oil composition and antioxidant enzyme activity in Mentha × piperita and Mentha arvensis L. Antioxidants 2019;8:547.
  42. Bordbar G.A., Madandoust M. Influence of salicylic acid on essential oil content and changes its compositions in Cuminum cyminum L. J. Essent. Oil-Bear. Plants. 2020;23:622-627.
  43. Ahmad M., Lee S.S., Dou X., Mohan D., Sung J.K., Yang J.E., et al. Effects of biochar on soil microbial communities and bioavailability of metals in contaminated soils. Chemosphere. 2016;142:1–10