Tissue Culture of Ungernia Victoris Vved. ex Artjush. (Amaryllidaceae J.ST.-HIL.) and Ptelea Trifoliata L. (Rutaceae JUSS.) as the Sources of Acetylcholinesterase Inhibitors

Document Type : Research Paper

Authors

1 Baekdudaegan National Arboretum, 1501 Chunyang-ro, Bonghwa 36209, Republic of Korea

2 Tashkent Botanical Garden named after acad. F.N. Rusanov of the Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan, 232 Durmon yoli str., Tashkent 100140, Uzbekistan

3 Kokand State Pedagogical Institute, 23 Turon str., Kokand 150700, Uzbekistan

4 Tashkent Medical Academy, 2 Farabi str., Tashkent 100109, Uzbekistan

Abstract

Several alkaloids extracted from diverse plant species across different botanical groups are recognized for their acetylcholinesterase-inhibitory properties. Among these, Ungernia victoris (UV), a rare endemic species from the western spurs of Pamir-Alay, is a significant source of galanthamine - a compound used in drugs for treating early- to mid-stage Alzheimer’s disease, poliomyelitis, and other neurological disorders. Similarly, Ptelea trifoliata (PT), a North American species widely cultivated in botanical gardens, demonstrates anti-inflammatory, antioxidant, anti-renal fibrosis, and acetylcholinesterase-inhibitory activities. This study aims to establish in vitro propagation protocols for U. victoris Vved. ex Artjush. (Amaryllidaceae J.St.-Hil.) and P. trifoliata L. (Rutaceae Juss.) as sources of acetylcholinesterase-inhibiting compounds. Using tissue culture techniques, including callus induction and regeneration, alkaloid biosynthesis was evaluated. Callus cultures of UV exhibited the highest galanthamine content, reaching 5.10% DW in a medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin, whereas in vitro-regenerated leaves contained lower levels (1.41% DW) and bulbs lacked galanthamine entirely. Naturally collected and botanical garden samples showed lower galanthamine levels, while seeds contained moderate amounts. The total alkaloid content in UV leaves collected from natural habitats reached up to 0.5%, comprising galanthamine (0.14–0.21%) and lycorine (0.059%), while the bulbs contained up to 0.96%, with galanthamine (0.24%) and lycorine (0.31%). For PT, callus cultures produced the highest kokusaginine content (1.12% DW) in Murashige & Skoog medium with 2,4-D and kinetin, surpassing levels in botanical garden samples (0.54–0.78% DW). However, kokusaginine biosynthesis was suppressed in in vitro-regenerated plants, where it was undetectable. This study demonstrates that callus cultures are a reliable and efficient source of galanthamine and kokusaginine, highlighting the potential of tissue culture methods to enhance the production of acetylcholinesterase-inhibiting alkaloids from medicinal plants.

Keywords

Main Subjects


  1. Rizzi L., Rosset I., Roriz-Cruz M. Global Epidemiology of Dementia: Alzheimer’s and Vascular Types. - Biomed. Res. Int. 2014; 3:1-8. DOI: 10.1155/2014/908915
  2. Ferri C.P., Prince M., Brayne C., Brodaty H., Fratiglioni L., Ganguli M., Hall K., Hasegawa K., Hendrie H., Huang Y., Jorm A., Mathers C., Menezes P.R., Rimmer E., Scazufca M. Alzheimer's Disease International. Global prevalence of dementia: a Delphi consensus study. -Lancet. 2005; 366(9503): 2112-7. DOI: 10.1016/S0140-6736(05)67889-0
  3. Overshot R. & Burns A. Treatment of dementia. –J. Neur. Neurosurg. & Psych. 2005; Suppl 5(Suppl 5):v53-9. DOI: 10.1136/jnnp.2005.082537
  4. Colovic M.B., Krstic D.Z., Lazarevic-Pasti T.D., Bondzic A.M., Vasic V.M. Acetylcholinesterase inhibitors: pharmacology and toxicology. –Curr. Neuroph. 2013; 11(3):315-35 DOI: 10.2174/1570159X11311030006
  5. Pohanka M. Cholinesterases: A Target of Pharmacology and Toxicology. -Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2011; 155:219–230. DOI: 10.5507/bp.2011.036
  6. Ahmed F., Ghalib R.M., Sasikala P., Ahmed Mueen K.K. Cholinesterase inhibitors from botanicals. -Pharmacogn. Rev. 2013; 7(14):121–130. DOI: 10.4103/0973-7847.120511
  7. Heinrich M., Teoh H.L. Galanthamine from snowdrop: the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. -J. Ethnopharm. 2004; 92:147–162. DOI: 10.1016/j.jep.2004.02.01
  8. Information about the Scientific Achievements of the Institute of Plants Chemical Compounds of the Academy of Sciences of the Republic of Uzbekistan. Available online: https://uzicps.uz/en/preparations/medications (accessed on 26 August 2024).
  9. Novikova I.Y., Tulaganov A.A. Structure of chemical compounds, methods of analysis, and process control. Physicochemical methods for the analysis of galanthamine. -Pharm. Chem. J. 2002; 36:623–627. DOI: 10.1023/A:1022677601680
  10. Pavlov A., Berkov S., Courot E., Gocheva T., Tuneva D., Pandova B., Georgiev V., Yanev S., Burrus M., Ilieva M. Galanthamine production by Leucojum aestivum in vitro systems. -Proc. Biochem. 2007; 42:734–739. DOI: 10.1016/j.procbio.2006.12.006
  11. Khan I., Nisar M., Khan N., Saeed M., Nadeem S., Fazalur R., Ali F., et al. Structural insights to investigate conypododiol as a dual cholinesterase inhibitor from Asparagus adscendens. -Fitoterapia. 2010; 81:1020–1025. DOI: 10.1016/j.fitote.2010.06.022
  12. Adsersen A., Kjolbye A., Dall O., Jager A.K. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava Schweigg. & Kort. -J. Ethnopharm. 2007; 113:179–182. DOI: 10.1016/j.jep.2007.05.006
  13. Pal I., Dey P. A review on lotus (Nelumbo nucifera) seed. -Intern. J. Sci. Res. 2015; 4:1659–1666. DOI: 10.21275/SUB156738
  14. Yang Z.D., Zhang X., Du J., Ma Z.J., Guo F., Lia S., Yao X.J. An aporphine alkaloid from Nelumbo nucifera as an acetylcholinesterase inhibitor and the primary investigation for structure–activity correlations. -Nat. Prod. Res. 2012; 26:387–392. DOI: 10.1080/14786419.2010.487188
  15. Ahmad H., Ahmad S., Khan E., Shahzad A., Ali M., Tahir M.N., Shaheen F., et al. Isolation: crystal structure determination and cholinesterase inhibitory potential of isotalatizidine hydrate from Delphinium denudatum. -Pharm. Biol. 2016; 55:680–686. DOI: 10.1080/13880209.2016.1240207
  16. Halldorsdottir E.S., Jaroszewski J.W., Olafsdottir E.S. Acetylcholinesterase inhibitory activity of lycopodane-type alkaloids from the Icelandic Lycopodium annotinum ssp. alpestre. -Phytoch. 2010; 71:149–157. DOI: 10.1016/j.phytochem.2009.10.018
  17. Rahman A., Parveen S., Khalid A., Farooq A., Choudhary M.I. Acetyl- and butyrylcholinesterase-inhibiting triterpenoid alkaloids from Buxus papillosa. -Phytoch. 2001; 58:963–968. DOI: 10.1016/s0031-9422(01)00332-6
  18. Murray A.P., Faraoni M.B., Castro M.J., Alza N.P., Cavallaro V. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. -Neuroph. 2013; 11:388–413. DOI: 10.2174/1570159X11311040004
  19. Obta T.Y., Mori C., Noda T., Aoki T. Furoquinolines. XX. Alkaloids of the leaves of Ruta graveolens and synthesis of dihydrokokusaginine. -Chem. Pharm. Bull. 1960; 8:377–379. DOI: 10.1248/cpb.8.377
  20. Park C.H., Kim S.H., Choi W., Lee Y.J., Kim J.S., Kang S.S., Suh Y.H. Novel anticholinesterase and antiamnesic activities of dehydroevodiamine, a constituent of Evodia rutaecarpa. -Planta Med. 1996; 62:405–409. DOI: 10.1055/s-2006-957926
  21. Tang X.C., Kindel G.H., Kozikowski A.P., Hanin I. Comparison of the effects of natural and synthetic huperzine A on rat brain cholinergic function in vitro and in vivo. -J. Ethnoph. 1994; 44:147–155. DOI: 10.1016/0378-8741(94)01182-6
  22. Satheeshkumar N., Mukherjee P.K., Bhadra S., Saha B.P. Acetylcholinesterase enzyme inhibitory potential of standardized extract of Trigonella foenum-graecum L. and its constituents. -Phytomed. 2010; 17:292–295. DOI: 10.1016/j.phymed.2009.06.006
  23. Williams Ph., Sorribas A., Howes M.J.R. Natural products as a source of Alzheimer’s drug leads. -Nat. Prod. Rep. 2011; 28:48–77. DOI: 10.1039/c0np00027b
  24. King J. The American Dispensatory, 5th ed., rev. and enl. From "The American Eclectic Dispensatory." Moore, Wilstach, Keys & Co., Cincinnati, Ohio, 1859; p. 754.
  25. Laurain-Mattar D. Galanthamine content of bulbs and in vitro cultures of Leucojum aestivum L. -Nat. Prod. Commun. 2006; 1:475–479. DOI: 10.1177/1934578X0600100609
  26. Kowalska M., Borkowski B. Alkaloids in leaves and roots of Ptelea trifoliata. -Acta Polon. Pharm. 1966; 23:295–304.
  27. Millspaugh C.F. Medicinal Plants. J. C. Yorston & Co., Philadelphia, Pennsylvania, 1892; p. 34.
  28. Mulvey R.K., Zalewski C.J. Kokusaginine: plant sources and its isolation from Ptelea trifoliata root bark. -Econ. Bot. 1969; 23(1):75–81. DOI: 10.1007/BF02862974
  29. Ohta T., Miyazaki T. Furoquinolines. XIII. Alkaloids from the pericarps of Ruta graveolens L. -Yakugaku Zasshi. 1958; 78:538–539; through Chem. Abstr. 52:17311. DOI: 10.1248/yakushi1947.78.5_538
  30. Bowen I.H., Motawe H.M. Isolation and identification of kokusaginine from Tinospora malabarica. -Planta Med. 1985; 51(6):529–530. DOI: 10.1055/s-2007-969588
  31. Terasaka M. Alkaloids of the root bark of Orixa japonica Thunb. III. -Yakugaku Zasshi. 1935; 53:1046–1056; through Chem. Abstr. 29:73.
  32. Werny F., Scheuer P.J. Hawaiian plant studies. IX. Alkaloids of Platydesma companulata Mann. -Tetrahedron. 1963; 19:1293–1305. DOI: 10.1016/S0040-4020(01)98592-8
  33. Lamberton J.A., Price J.R. Alkaloids of the Australian Rutaceae: Acronychia baueri. IV. Alkaloids present in the leaves. -Aust. J. Chem. 1953; 6:66–77. DOI: 10.1071/CH9530066
  34. Orazi O.O., Corral R.A. Plant studies. VIII. Isolation of tertiary bases from Balfourodendron riedelianum. -Anales Assoc. Quim. Arg. 1963; 51:174–179; through Chem. Abstr. 1964; 61: 959g
  35. Molnar J., Ocsovszki I., Puskas L., Ghane T., Hohmann J., Zupko I. Investigation of the antiproliferative action of the quinoline alkaloids kokusaginine and skimmianine on human cell lines. -Curr. Signal Transduction Therapy. 2013; 8(2):148–155(8). DOI: 10.2174/15743624113086660006
  36. Bulgakov V.P., Vereshchagina Y.V., Bulgakov D.V., Shkryl Y.N. The role of phytohormones in stress-induced secondary metabolism in plants. -Plant Cell Rep. 2012; 31(9):1525–1539. DOI: 10.1007/s00299-012-1272-7
  37. Georgiev V., Ivanov I., Pavlov A. Elicitation of plant cell and tissue cultures: A mechanism-based perspective. -Appl. Microbiol. Biotechnol. 2012; 95(2):309–317. DOI: 10.1007/s00253-012-4155-0
  38. Jin F., Hu Z. Production of galanthamine by cell and tissue cultures of Lycoris spp. -Plant Tissue Cult. Lett. 2003; 10(3):204–209. DOI: 10.1016/S0168-9452(03)00055-6
  39. Kokkinos M., Berkov S., Lucini L. Galanthamine production in plant in vitro systems: An overview. -Phytochem. Rev. 2015;14(4):591–603. DOI: 10.1007/s11101-015-9415-7
  40. Mendes M.D., Sá E., Madeira A. Hairy root cultures for galanthamine production. -Plant Cell Tissue Organ Cult. 2009; 99(1):1–6. DOI: 10.1007/s11240-009-9581-6
  41. Proskurnina N.F., Yakovleva A.P. About alkaloids of Galanthus woronowii. Part II. About the extraction of new alkaloids. -J. Common. Chem. 1952; 22:1899 (In Russian).
  42. Schumann A., Berkov S., Claus D., et al. Production of galanthamine by Leucojum aestivum shoots grown in different bioreactor systems. -Appl. Biochem. Biotechnol. 2012; 167:1907–1920. DOI: 10.1007/s12010-012-9743-3
  43. Zhao J., Verpoorte R. Galanthamine production using plant tissue cultures: A review. -Biotechnol. Adv. 2007; 25(4):389–409. DOI: 10.1016/j.biotechadv.2007.04.002
  44. Khalid N., Aqil F., Ahmad I. Elicitation and alkaloid production in callus cultures of Rutaceae species. -Ind. Crops Prod. 2011; 33(3):541–546. DOI: 10.1016/j.indcrop.2010.12.016
  45. Murthy H.N., Lee E.J., Paek K.Y. Production of secondary metabolites from cell and organ cultures: Strategies and approaches. -Adv. Bot. Res. 2014; 71:1–20. DOI: 10.1016/B978-0-12-408062-1.00001-4
  46. Sharma M., Chandra S. Plant tissue culture: A method for production of bioactive compounds. -Indian J. Sci. Technol. 2013; 6(1):1–10. DOI: 10.17485/ijst/2013/v6i1.3
  47. Tahir A., Hayat M.Q., Ahmad M. Optimized production of secondary metabolites in callus cultures of Rutaceae family plants. -Plant Cell Tissue Organ Cult. 2017; 130(3):579–587. DOI: 10.1007/s11240-017-1261-9
  48. Verpoorte R., Contin A., Memelink J. Biotechnology for the production of plant secondary metabolites. -Phytochem. Rev. 2002; 1(1):13–25. DOI: 10.1023/A:1015871916833
  49. Komarov V.L. Flora of the USSR. V4: Liliiflorae and Microspermae; Akademia Nauk SSSR: Leningrad, Russia, 1935; p. 568 (English, 1968).
  50. Red Book of Uzbekistan (Plants). Сhinor ENK: Tashkent, Uzbekistan, 2019; 359 (In Russian). Available online: https://www.researchgate.net/publication/334913462_Red_Book_Uzbekistan (accessed on 26 August 2024).
  51. Bailey V.L. Historical review of Ptelea trifoliata in botanical and medical literature. -Econ. Bot. 1960; 14:180–189. DOI: 10.1007/BF02907947
  52. Frolova V.I., Kuzovkoo A.D., Kibol'chich P.N. Alkaloids of Ptelea trifoliata L. The structure of pteleine. -Zhumal Obshchei Khimii. 1964; 34:3499–3505; through J. Gen. Chem. USSR. 1964; 34:3542–3546
  53. Hale E.M. Report of the Bureau of Materia Medica, Pharmacy, and Provings. -Amer. Inst. Hom. Sect. 2, Art. 7. 1868;157–239.
  54. Potter O.F. Medicinal uses of Ptelea trifoliata. -Med. Report. St. Louis, Missouri, 1866; 1:19–20.
  55. Price J.R. Alkaloids related to anthranilic acid. -Fortschr. Chem. Org. Naturstoffe. 1956; 12: 302–345; through Chem. Abstr. 1957;51:5166a. DOI: 10.1007/978-3-7091-8032-7_5
  56. Schoepf D. Materia Medica Americana Potassium Regni Vegetabilis. Erlange, Germany, 1787; p. 15.
  57. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. -Physiol. Plant. 1962; 159:473–497. DOI: 10.1111/j.1399-3054.1962.tb08052.x
  58. Chu C., Wang C.C., Sun C., Hsu C., Yin K., Chu C.C., Fengqin B. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. -Sci. Sin. 1975; 18:659–688.
  59. Chu C.C. The N6 medium and its application to anther culture of cereal crops. -Proc. Symp. Plant Tissue Cult. 1978;24: 43–50.
  60. Gamborg O.L., Eveleigh D.E. Culture methods and detection of glucanases in cultures of wheat and barley. -Can. J. Biochem. 1968; 46:417–421. DOI: 10.1139/o68-063
  61. Lloyd G., McCown B.H. Commercially-feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot-tip culture. -Int. Plant Prop. Soc. Proc. 1980; 30:421–427
  62. Vollosovich A.G., Puchinina G.M., Nikolaeva L.A. Optimization of macrosalt composition for tissue culture of Rauwolfia serpentina Benth. -Rast. Resur. 1979; 15:516–526 (In Russian).
  63. Mustafina F.U., Juraeva H.K., Jamalova D.N., et al. Conservation potential through in vitro regeneration of two threatened medicinal plants, Ungernia sewertzowii and U. victoris. -Plants. 2024; 13:1966. DOI: 10.3390/plants13141966
  64. Shah M., Ullah M.A., Drouet S., et al. Interactive effects of light and melatonin on biosynthesis of silymarin and anti-inflammatory potential in callus cultures of Silybum marianum (L.) Gaertn. -Molecules. 2019; 24:1207. DOI: 10.3390/molecules24071207
  65. Velioglu Y.S., Mazza G., Gao L., Oomah B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. -J. Agric. Food Chem. 1998; 46:4113–4117. DOI: 10.1021/jf9801973
  66. Anet F.A.L., Gilham R.T., Gow P., Hughes G.K., Ritchie E. Chemical constituents of Australian Flindersia species. III. Alkaloids of Flindersia collina. -Aust. J. Sci. Res. 1952; A5:412–419. DOI: 10.1071/CH9520412
  67. Tripathi L., Tripathi J.N. Role of biotechnology in medicinal plants. -Plant Cell Rep. 2003; 21(8):1–9. DOI: 10.1007/s00299-003-0546-1
  68. Kuwayama Y. Studies on making use of gamma-butyrolactone. VII. Synthesis of dihydroevolitrine, dihydrokokusaginine, and dihydromaculine. -Yakugaku Zasshi. 1962; 82:703–705; through Chem. Abstr. 1963; 58:5741h. DOI: 10.1071/CH9520412