Fabrication of Pistacia atlantica Desf. Oil-Encapsulated Chitosan Nanoparticles in Polyvinyl Alcohol Nanofibers: Biocompatibility and Antioxidant Properties for Skin Care Applications

Document Type : Research Paper

Authors

1 Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran

2 Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran

3 Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran

Abstract

This study provides a comprehensive nutritional and phytochemical analysis of Pistacia atlantica Desf. fruit (PAF), which revealed a high fat content (33.90%) and carbohydrate content (62.41%), identifying it as a significant energy source. Phytochemical profiling demonstrated notable levels of phenolics (17.70 ± 1.59 mg GAE/g dry weight) and flavonoids (6.46 ± 0.35 mg CE/g), contributing to substantial antioxidant properties. A novel nanocomposite was developed by encapsulating Pistacia atlantica oil (PAO) within chitosan nanoparticles (CNPs) using ionic gelation with sodium tripolyphosphate, followed by embedding these nanoparticles into polyvinyl alcohol (PVA) nanofibers. Characterization of the resulting nanocomposite revealed a mean particle size of 104.76 nm and a polydispersity index (PDI) of 0.41, indicating a uniform size distribution. The encapsulation efficiency (EE%) of PAO was consistent across formulations, while the loading capacity (LC%) increased with higher CNP content, achieving a maximum of 32.37% for a PVA ratio of 1:2. Antioxidant assays confirmed robust activity, with FRAP and DPPH values of 79.4 ± 2.1 µmol ESF/100g and an IC₅₀ of 7344.7 µg/mL, respectively. Cell viability assays demonstrated excellent biocompatibility, with CNP and PVA-CNP formulations maintaining over 82% viability in human dermal fibroblast cells. The CNP-PVA nanofiber system infused with PAO demonstrates controlled release, robust antioxidant properties, and superior biocompatibility, positioning it as a potential solution for wound healing and skin care needs

Keywords

Main Subjects


  1. Cedillo-Cortezano M., Martinez-Cuevas L.R., López J.A.M., Barrera López I.L., Escutia-Perez S., Petricevich V.L. Use of Medicinal Plants in the Process of Wound Healing: A Literature Review. Pharm. 2024;17(3):303.
  2. Fernandes A., Rodrigues P.M., Pintado M., Tavaria F.K. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. Phytomedicine. 2023;115:154824.
  3. Farhan M. The Promising Role of Polyphenols in Skin Disorders. Molecules. 2024;29(4):865.
  4. Benmohamed M., Guenane H., Messaoudi M., Zahnit W., Egbuna C., Sharifi-Rad M., Chouh A., Seghir B.B., Rebiai A., Boubekeur S., Azli T., Harrat M., Sawicka B., Atanassova M., Yousfi M. Mineral Profile, Antioxidant, Anti-Inflammatory, Antibacterial, Anti-Urease and Anti-α-Amylase Activities of the Unripe Fruit Extracts of Pistacia atlantica. Molecules. 2023;28(1).
  5. Bozorgi M., Memariani Z., Mobli M., Salehi Surmaghi M.H., Shams-Ardekani M.R., Rahimi R. Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): A Review of Their Traditional Uses, Phytochemistry, and Pharmacology. The Scientific World Journal. 2013;2013(1):219815.
  6. Mahjoub F., Akhavan Rezayat K., Yousefi M., Mohebbi M., Salari R. Pistacia atlantica Desf. A review of its traditional uses, phytochemicals and pharmacology. Journal of Medicine and Life. 2018;11(3):180-86.
  7. Memariani Z., Sharifzadeh M., Bozorgi M., Hajimahmoodi M., Farzaei M.H., Gholami M., Siavoshi F., Saniee P. Protective effect of essential oil of Pistacia atlantica Desf. on peptic ulcer: Role of α-pinene. Journal of Traditional Chinese Medicine. 2017;37(1):57-63.
  8. Hamidi S.A., Tabatabaei Naeini A., Oryan A., Tabandeh M.R., Tanideh N., Nazifi S. Cutaneous Wound Healing after Topical Application of Pistacia atlantica Gel Formulation in Rats. Turkish Journal of Pharmaceutical Sciences. 2017;14(1):65-74.
  9. Fadilah N.I.M., Phang S.J., Kamaruzaman N., Salleh A., Zawani M., Sanyal A., Maarof M., Fauzi M.B. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants. 2023;12(4):787.
  10. Saber-Tehrani M., Givianrad M.H., Aberoomand-Azar P., Waqif-Husain S., Jafari Mohammadi S.A. Chemical Composition of Iran's Pistacia atlantica Cold-Pressed Oil. Journal of Chemistry. 2013;2013:126106.
  11. Najafiasl M., Osfouri S., Zaeri S. Evaluation of physicochemical properties, release kinetics, and in vitro/in vivo wound healing activity of the electrospun nanofibres loaded with the natural antioxidant oil from Pistacia atlantica. Journal of Drug Delivery Science and Technology. 2023;84:104512.
  12. El Zerey-Belaskri A., Belyagoubi-Benhammou N., Benhassaini H. From traditional knowledge to modern formulation: potential and prospects of Pistacia atlantica desf. essential and fixed oils uses in cosmetics. Cosmet. 2022;9(6):109.
  13. Rauf A., Patel S., Uddin G., Siddiqui B.S., Ahmad B., Muhammad N., Mabkhot Y.N., Hadda T.B. Phytochemical, ethnomedicinal uses and pharmacological profile of genus Pistacia. Biomedicine and Pharmacotherapy. 2017;86:393-404.
  14. Carvalho I.T., Estevinho B.N., Santos L. Application of microencapsulated essential oils in cosmetic and personal healthcare products – a review. Int J Cosmet Sci. 2016;38(2):109-19.
  15. Yammine J., Chihib N.-E., Gharsallaoui A., Ismail A., Karam L. Advances in essential oils encapsulation: Development, characterization and release mechanisms. Poly Bull. 2024;81(5):3837-82.
  16. Reis D.R., Ambrosi A., Luccio M.D. Encapsulated essential oils: A perspective in food preservation. Future Foods. 2022;5:100126.
  17. Maes C., Bouquillon S., Fauconnier M.L. Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review. Molecules. 2019;24(14).
  18. Cimino C., Maurel O.M., Musumeci T., Bonaccorso A., Drago F., Souto E.M.B., Pignatello R., Carbone C. Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharm. 2021;13(3).
  19. Vinceković M., Jurić S., Marijan M., Viskić M., Vlahoviček-Kahlina K., Maslov Bandić L. Encapsulation of herb extracts (Aromatic and medicinal herbs). 2021; 263-322.
  20. Taouzinet L., Djaoudene O., Fatmi S., Bouiche C., Amrane-Abider M., Bougherra H., Rezgui F., Madani K. Trends of nanoencapsulation strategy for natural compounds in the food industry. Processes. 2023;11(5):1459.
  21. Salvioni L., Morelli L., Ochoa E., Labra M., Fiandra L., Palugan L., Prosperi D., Colombo M. The emerging role of nanotechnology in skincare. Advances in Colloid and Interface Science. 2021;293:102437.
  22. Stoyanova N., Nachev N., Spasova M. Innovative bioactive nanofibrous materials combining medicinal and aromatic plant extracts and electrospinning method. Membr. 2023;13(10):840.
  23. Zahmatkeshan M., Adel M., Bahrami S., Esmaeili F., Rezayat S.M., Saeedi Y., Mehravi B., Jameie S.B., Ashtari K. Polymer Based Nanofibers: Preparation, Fabrication, and Applications. In Barhoum A Bechelany M, Makhlouf A (Eds.), Handbook of Nanofibers. Cham: Springer Int Publ. 2018. pp. 1-47.
  24. Oliveira C., Sousa D., Teixeira J.A., Ferreira-Santos P., Botelho C.M. Polymeric biomaterials for wound healing. [Review]. Frontiers in Bioengineering and Biotechnology. 2023;11.
  25. Shalaby M.A., Anwar M.M., Saeed H. Nanomaterials for application in wound Healing: Current state-of-the-art and future perspectives. Journal of Polymer Research. 2022;29(3):91.
  26. Iacob A.-T., Drăgan M., Ionescu O.-M., Profire L., Ficai A., Andronescu E., Confederat L.G., Lupașcu D. An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management. Pharm. 2020;12(10):983.
  27. International A., international A.o.o.a.c., Horwitz W., Latimer e., Latimer G.W. Official Methods of Analysis of AOAC International: AOAC Int. 2012.
  28. Fathi F., Ebrahimi S.N., Valadão A.I.G., Andrade N., Costa A.S.G., Silva C., Fathi A., Salehi P., Martel F., Alves R.C., Oliveira M.B.P.P. Exploring Gunnera tinctoria: From Nutritional and Anti-Tumoral Properties to Phytosome Development Following Structural Arrangement Based on Molecular Docking. Molecules. 2021;26(19):5935.
  29. Özcan M.M., Ghafoor K., Al Juhaimi F., Ahmed I.A.M., Babiker E.E. Effect of cold-press and soxhlet extraction on fatty acids, tocopherols and sterol contents of the Moringa seed oils. South African Journal of Botany. 2019;124:333-37.
  30. Hameed M., Rasul A., Waqas M.K., Saadullah M., Aslam N., Abbas G., Latif S., Afzal H., Inam S., Akhtar Shah P. Formulation and Evaluation of a Clove Oil-Encapsulated Nanofiber Formulation for Effective Wound-Healing. Molecules. 2021;26(9):2491.
  31. Mahdavinia G.R., Mosallanezhad A., Soleymani M., Sabzi M. Magnetic-and pH-responsive κ-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug. International Journal of Biological Macromolecules. 2017;97:209-17.
  32. Baliyan S., Mukherjee R., Priyadarshini A., Vibhuti A., Gupta A., Pandey R.P., Chang C.-M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules. 2022;27(4):1326.
  33. Benzie I.F.F., Strain J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry. 1996;239(1):70-76.
  34. Ros E. Health Benefits of Nut Consumption. Nutr. 2010;2(7):652-82.
  35. Poljšak N., Kreft S., Kočevar Glavač N. Vegetable butters and oils in skin wound healing: Scientific evidence for new opportunities in dermatology. Phytotherapy Research. 2020;34(2):254-69.
  36. Hazrati S., Govahi M., Ebadi M.-T., Habibzadeh F. Comparison and evaluation of oil content, composition and antioxidant properties of Pistacia atlantica and Pistacia khinjuk grown as wild. International Journal of Horticultural Science and Technology. 2020;7(2):165-74.
  37. Jara C.P., Mendes N.F., Prado T.P.d., de Araújo E.P. Bioactive Fatty Acids in the Resolution of Chronic Inflammation in Skin Wounds. Adv in WND Care. 2020;9(8):472-90.