Phytochemical-growth Responses of Lemon balm (Melissa officinalis L.) to Gibberellic Acid and Benzyladenine under Different Nutritional Conditions

Document Type : Research Paper

Authors

Department of Medicinal Plants, Arak University, Arak, Iran

Abstract

The present study aimed to assess the effects of gibberellic acid and benzyladenine on growth and some phytochemical characteristics of Melissa officinalis L. under different nutritional conditions in the hydroponic culture system. The experiment was conducted in a factorial split plot based on a completely randomized design with three replications. The main plot included nutrient solution type (Arnon Hoagland, Shi et al, and He et al that were named 1 to 3 throughout the text, respectively type 1, type 2, and type 3) and the subplot included the factorial combination of gibberellic acid (0 and 100 ppm) and benzyladenine (0, 50 and 100 ppm) as foliar spraying. The results showed that the effects of nutrient solution type on different plant growth traits, chlorophyll contents, antioxidant capacity and plant essential oil content were significant. Furthermore, different traits of the plant were affected by benzyl adenine (BA) solution spraying. The highest amounts of chlorophylls a (1.07 mg/g FW) and b (0.33 mg/g FW) and carotenoids were observed in plants treated with 50 ppm BA solution. The highest amounts of phenolic compounds (48.13 mg/g DW) and antioxidant capacity (154.62 mg Ascorbic acid g-1 DW) were observed at 100 ppm BA. The use of gibberellic acid (GA3) led to significant increases in plant height, stem diameter, internode length, shoot dry weight, chlorophylls a and b contents and plant essential oil content. However, a significant reduction in volume and dry weight of roots, and total phenol content was observed in response to GA3 treatment. BA increased the content of phenolic compounds and the antioxidant capacity of the plants.

Keywords

Main Subjects


  1. Khan N., Bano A.M.D., Babar A. Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLoS ONE. 2020; 15(4): e0231426. https://doi.org/10.1371/journal.pone.0231426
  2. Xiaojia Z., Baolin Z., Yibo S., Yulong F. Effects of gibberellins on important agronomic traits of horticultural plants. Frontiers in Plant Science. 2022; 13: 978223. https://doi.org/10.3389/fpls.2022.978223
  3. Castro-Camba R, Sanchez C., Vidal N., Vielba J.M. Plant development and crop yield: The role of gibberellins. Plants. 2022; 11(19): 2650. https://doi.org/10.3390/plants1119265
  4. Wu W., Du K., Kang X., Wei H. The diverse roles of cytokinins in regulating leaf development. Horticulture Research. 2021; 8: 118. https://doi.org/10.1038/s41438-021-00558-3
  5. Tzortzakis N., Nicola S., Savvas D., Voogt W. Soilless cultivation through an intensive crop production scheme. Management strategies, challenges and future directions. Frontiers in Plant Science. 2020; 11: 363. https://doi.org/10.3389/fpls.2020.00363
  6. Jabłonska-Trypuc A., Matejczyk M., Czerpak R. N6-benzyladenine and kinetin influence antioxidative stress parameters in human skin fibroblasts. Molecular and cellular biochemistry. 2016; 413: 97-107. https://doi.org/10.1007/s11010-015-2642-5
  7. Zhang L., Shen C., Wei J., Han W. Effects of exogenous 6-benzyladenine on dwarfing, shoot branching, and yield of tea plant (Camellia sinensis). Hortscience. 2018; 53(5): 651-655. https://doi.org/10.21273/HORTSCI12892-18
  8. Liu X., Xu D., Yang Z., Zhang N., Pan L. Investigation of exogenous benzyladenine on growth, biochemical composition, photosynthesis and antioxidant activity of Indian sandalwood (Santalum album L.) seedlings. Journal of plant growth regulation. 2018; 37: 1148-1158. https://doi.org/10.1007/s00344-018-9806-y
  9. Xie Y., Chen L. Epigenetic regulation of gibberellin metabolism and signaling. Plant and Cell Physiology. 2020; 61(11): 1912-1918. https://doi.org/10.1093/pcp/pcaa101
  10. Abdel-Naime W.A., Fahim J.R., Fouad M.A., Kamel M.S. Antibacterial, antifungal, and GC-MS studies of Melissa officinalis. South African Journal of Botany. 2019; 124: 228-234. https://doi.org/10.1016/ j.sajb.2019.05.011
  11. Petrisor G., Motelica L., Craciun L.N., Oprea O.C., Ficai D., Ficai A. Melissa officinalis: Composition, pharmacological effects and derived release systems—A review. International Journal of Molecular Sciences. 2022; 23(7): 3591. https://doi.org/10.3390/ijms23073591
  12. Adamiak K., Kurzawa M., Sionkowska A. Physicochemical performance of collagen modified by Melissa officinalis extract. Cosmetics. 2021; 8(4): 95. https://doi.org/10.3390/cosmetics8040095
  13. Lichtenthaler H.K., Wellburn A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions. 1989; 11: 591-592. https://doi.org/ 10.1042/bst0110591
  14. Singleton V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 1965; 16(3): 144-158. https://doi.org/ 10.5344/ajev.1965.16.3.144
  15. Burits M., Bucar, F. Antioxidant activity of Nigella sativa essential oil. Phytotheraphy Research. 2000; 14: 323-328. https://doi.org/10.1002/ 1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q
  16. Miceli A., Moncada A., Sabatino L., Vetrano F. Effect of gibberellic acid on growth, yield, and quality of leaf lettuce and rocket grown in a floating system. Agronomy. 2019; 9(7): 382. https://doi.org/ 10.3390/agronomy9070382
  17. Ghassemi-Golezani K., Nikpour-Rashidabad N., Samea-Andabjadid S. Application of growth promoting hormones alters the composition and antioxidant potential of dill essential oil under salt stress. Scientific Reports. 2022; 12: 14349. https://doi.org/10.1038/s41598-022-18717-4
  18. El Karamany M.F., Sadak M.S. Bakry B.A. Improving quality and quantity of mung bean plant via foliar application of plant growth regulators in sandy soil conditions. Bulletin of the National Research Centre. 2019; 43(1): 1-7. https://doi.org/10.1186/s42269-019-0099-5
  19. Atteya A.K.G., El Gendy A.E.G. Growth, flowering and chemical compositions of Tagetes patula L. plants as affected with naphthalene acetic acid and gibberellic acid. Bioscience Research. 2018; 15(2): 716-730.
  20. Gao S., Chu C. Gibberellin metabolism and signaling: Targets for improving agronomic performance of crops, Plant and Cell Physiology. 2020; 61(11): 1902-1911. https://doi.org/10.1093/pcp/pcaa104
  21. Silva T.C., Bertolucci S.K., Carvalho A.A., Tostes W.N., Alvarenga I.C., Pacheco F.V., Pinto J.E. Macroelement omission in hydroponic systems changes plant growth and chemical composition of Melissa officinalis L. essential oil. Journal of Applied Research on Medicinal and Aromatic Plants. 2021; 24: 100297. https://doi.org/10.1016/ j.jarmap.2021.100297
  22. Miceli A., Moncada A., Sabatino L., Vetrano F. Effect of gibberellic acid on growth, yield, and quality of leaf lettuce and rocket grown in a floating system. Agronomy. 2019; 9(7): 382. https://doi.org/10.3390/agronomy9070382
  23. Shomeili M., Nabipour M., Meskarbashee M., Memari H.R. Effects of gibberellic acid on sugarcane plants exposed to salinity under a hydroponic system. African Journal of Plant Science. 2011; 5(10): 609-616. https://doi.org/10.5897/AJPS.9000093
  24. Tanimoto E., Homma T., Abe J., Lux A., Luxova M., Yoshioka Y., Matsuo K. Gibberellin regulation of root growth and flowering of tea plant (Camellia sinensis L.). International Sysmposium “Root Research and Applications”. ROOTRAP, Boku, Vienna, Austria. 2009; 1-2.
  25. Mao J., Niu C., Li K., Mobeen Tahir M., Khan A., Wang H., Zhang, D. Exogenous 6‐benzyladenine application affects root morphology by altering hormone status and gene expression of developing lateral roots in Malus hupehensis. Plant Biology. 2020; 22(6): 1150-1159. https://doi.org/10.1111/plb.13154
  26. Li Z., Liu Z. Effects of benzyladenine and naphthalene acetic acid on growth and camptothecin accumulation in Camptotheca acuminata seedlings. Journal of Plant Growth Regulation. 2003; 22: 205-216. https://doi.org/10.1007/s00344-003-0015-x
  27. Wang N., Fu F., Wang H., Wang P., He S., Shao H., Zhang X. Effects of irrigation and nitrogen on chlorophyll content, dry matter and nitrogen accumulation in sugar beet (Beta vulgaris L.). Scientific Reports. 2021; 11(1): 16651. https://doi.org/10.1038/s41598-021-95792-z
  28. Chrysargyris A., Panayiotou C., Tzortzakis N. Nitrogen and phosphorus levels affected plant growth, essential oil composition and antioxidant status of lavender plant (Lavandula angustifolia Mill.). Industrial Crops and Products. 2016; 83: 577-586. https://doi.org/10.1016/ j.indcrop.2015.12.067
  29. Parrey Z.A., Shah S.H., Fayaz M., Casini R., Elansary H.O., Mohammad F. Nitrogen supplementation modulates morphological, biochemical, yield and quality attributes of peppermint. Plants. 2023; 12(4): 809. https://doi.org/10.3390/plants12040809
  30. Keshavarz-Mirzamohammadi H., Tohidi-Moghadam H.R., Hosseini J. Is there any relationship between agronomic traits, soil properties and essential oil profile of peppermint (Mentha piperita L.) treated by fertilizer treatments and irrigation regimes? Annals of Applied Biology. 2021; 179(3): 331-344. https://doi.org/10.1111/aab.12707
  31. Tyagi K., Maoz I., Kochanek B., Sela N., Lerno L., Ebeler S.E., Lichter A. Cytokinin but not gibberellin application had major impact on the phenylpropanoid pathway in grape. Horticulture Research. 2021; 8(1): 51. https://doi.org/10.1038/s41438-021-00488-0
  32. Sosnowski J., Truba M., Vasileva V. The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture. 2023; 13(3): 724. https://doi.org/10.3390/agriculture13030724
  33. Janeckova H., Husickova A., Lazar D., Ferretti U., Pospisil P., Spundova M. Exogenous application of cytokinin during dark senescence eliminates the acceleration of photosystem II impairment caused by chlorophyll b deficiency in barley. Plant Physiology and Biochemistry. 2019; 136: 43-51. https://doi.org/10.1016/j.plaphy.2019.01.005
  34. Camas-Reyes A., Vuelvas-Nolasco R., Cabrera-Ponce J.L., Pereyra-Alferez B., Molina-Torres J., Martinez-Antonio A. Effect of different cytokinins on shoot outgrowth and bioactive compounds profile of lemongrass essential oil. International Journal of Plant Biology. 2022; 13(3): 298-314. https://doi.org/10.3390/ijpb13030025
  35. Cesarino I., Eudes A., Urbanowicz B., Xie M. Editorial: Phenylpropanoid Systems Biology and Biotechnology. Frontiers in Plant Science. 2022; 13: 866164. https://doi.org/10.3389/fpls.2022.866164
  36. Grzegorczyk-Karolak I., Kuzma L., Wysokinska H. The influence of cytokinins on proliferation and polyphenol accumulation in shoot cultures of Scutellaria altissima L. Phytochemistry Letters. 2017; 20: 449-455. https://doi.org/10.1016/j.phytol.2016.12.029
  37. Khalil S.A., Kamal N., Sajid M., Ahmad N., Zamir R., Ahmad N., Ali S. Synergism of polyamines and plant growth regulators enhanced morphogenesis, stevioside content, and production of commercially important natural antioxidants in Stevia rebaudiana Bert. In Vitro Cellular & Developmental Biology. 2016; 52: 174-184. https://doi.org/10.1007/s11627-016-9749-6
  38. Costa-Perez A., Ferrer M.A., Calderon A.A. Combined effects of cytokinin and UV-C light on phenolic pattern in Ceratonia siliqua shoot cultures. Agronomy. 2023; 13(3): 621. https://doi.org/ 10.3390/ agronomy13030621
  39. Abdel-Mola M., Kenawy A., Ali S., Ayyat A. Influence of foliar application of gibberellic acid and liquorice root extract on growth, volatile oil yield productivity and antimicrobial activity in geranium (Pelargonium graveolens L.) plants. Scientific Journal of Flowers and Ornamental Plants. 2022; 9(4): 249-271. https://doi.org/10.21608/ sjfop.2022.272767
  40. Safaei F., Alirezalu A., Noruzi P., Alirezalu K. Phytochemical and morpho-physiological response of Melissa officinalis L. to different NH4+ to NO3- ratios under hydroponic cultivation. BMC Plant Biology. 2024; 24(1), 968. https://doi.org/10.1186/s12870-024-05693-2
  41. Naseri A., Alirezalu A., Noruzi P., Alirezalu K. The effect of different ammonium to nitrate ratios on antioxidant activity, morpho-physiological and phytochemical traits of Moldavian balm (Dracocephalum modavica) Scientific Reports. 2022; 12(1), 16841.