Studying the Biological and Nutritional Role of the Saad Plant (Cyperus rotundus L.), and its Application in some Food Systems

Document Type : Research Paper

Authors

1 Department of Home Economics, College of Education for Girls, University of Baghdad

2 Department of Food Science, College of Agricultural Engineering Sciences, University of Baghdad, Iraq

Abstract

Cyperus rotundus L., a medicinal perennial from the Cyperaceae family, contains bioactive compounds like fatty oils, flavonoids, and terpenoids, offering anti-inflammatory and digestive benefits. This study analyzes its amino acid profile and pharmacological potential using advanced techniques to authenticate and differentiate its chemical composition.  This study analyzed Cyperus rotundus tubers from Iraq, assessing moisture, protein, fat, ash, fiber, and carbohydrates. Amino acids were quantified via HPLC to evaluate nutritional properties (AAS, EAAI, BV, PER), enhancing understanding of their therapeutic potential for traditional and modern medicine. The chemical analysis of Cyperus rotundus L. tubers revealed a notable nutritional profile: 6.86% moisture, 12.40% protein, 5.13% fat, 68.13% carbohydrates, 1.33% ash, and 6.18% crude fiber. Using HPLC, the study identified 18 amino acids, including 8 essential ones, with glutamic acid (1202.03 µg/ml) being the most abundant, followed by leucine and isoleucine. Key nutritional indices were calculated, showing a biological value (BV) of 61.71, an essential amino acid index (EAAI) of 66.85, and a high amino acid score (AAS) of 131.21, indicating superior protein quality compared to FAO standards. The protein efficiency ratio (PER) further confirmed its nutritional potential. These findings highlight Cyperus rotundus as a rich source of essential amino acids and high-quality protein, supporting its use in functional foods, dietary supplements, and medicinal applications. The study underscores the value in food technology and agriculture in improving nutrition and health.

Keywords

Main Subjects


  1. Pan L., Chen K., Liao X. The complete chloroplast genome and phylogenetic analysis of Cyperus malaccensis Lam (Cyperaceae). Mitochondrial DNA B Resour. 2024; 9(1): 114-118.
  2. Zou Z., Zheng Y., Zhang Z., Xiao Y., Xie Z., Chang L., Zhang L., Zhao Y. Molecular characterization of oleosin genes in Cyperus esculentus, a Cyperaceae plant producing oil in underground tubers. Plant Cell Reports. 2023; 42(11): 1791-1808.
  3. Zhang S., Li P., Wei Z., Cheng Y., Liu J., Yang Y., Wang Y., Mu Z. Cyperus (Cyperus esculentus L.): A Review of Its Compositions, Medical Efficacy, Antibacterial Activity and Allelopathic Potentials. Plants (Basel). 2022; 11(9).
  4. Liu Y., Chen M., Li Y., Feng X., Chen Y., Lin L. Analysis of Lipids in Green Coffee by Ultra-Performance Liquid Chromatography-Time-of-Flight Tandem Mass Spectrometry. Molecules. 2022; 27(16).
  5. Amala Dev A.R., Sonia Mol J. Citrus Essential Oils: A Rational View on its Chemical Profiles, Mode of Action of Anticancer Effects/Antiproliferative Activity on Various Human Cancer Cell Lines. Cell Biochemistry and Biophysics. 2023; 81(2): 189-203.
  6. Sharma N., Kochar M., Allardyce B.J., Rajkhowa R., Agrawal R. Unveiling the potential of cellulose nanofibre based nitrogen fertilizer and its transformative effect on Vigna radiata (Mung Bean): nanofibre for sustainable agriculture. Frontiers in Plant Science. 2024; 15: 1336884.
  7. Kauffmann C.M., de Jesus Boari A., Silva J.M.F., Blawid R., Nagata T. Complete genome sequence of patchouli chlorosis-associated cytorhabdovirus, a new cytorhabdovirus infecting patchouli plants in Brazil. Archives of Virology. 2022; 167(12): 2817-2820.
  8. Amtaghri S., Qabouche A., Slaoui M., Eddouks M. A Comprehensive Overview of Hibiscus rosa-sinensis L.: Its Ethnobotanical Uses, Phytochemistry, Therapeutic Uses, Pharmacological Activities, and Toxicology. Endocrine, Metabolic & Immune Disorders - Drug Targets. 2024; 24(1): 86-115.
  9. Taheri Y., Herrera-Bravo J., Huala L., Salazar L.A., Sharifi-Rad J., Akram M., Shahzad K., Melgar-Lalanne G., Baghalpour N., Tamimi K., Mahroo-Bakhtiyari J., Kregiel D., Dey A., Kumar M., Suleria H.A.R., Cruz-Martins N., Cho W.C. Cyperus spp.: A Review on Phytochemical Composition, Biological Activity, and Health-Promoting Effects. Oxidative Medicine and Cellular Longevity. 2021; 2021: 4014867.
  10. Al-Snafi A.E. A review on Cyperus rotundus A potential medicinal plant. IOSR Journal of Pharmacy. 2016; 6(7): 32-48.
  11. Raut N.A., Gaikwad N.J. Antidiabetic activity of hydro-ethanolic extract of Cyperus rotundus in alloxan induced diabetes in rats. Fitoterapia. 2006; 77(7-8): 585-588.
  12. Ahani H., Attaran S. Therapeutic potential of Seabuckthorn (Hippophae rhamnoides L.) in medical sciences. Cellular, Molecular and Biomedical Reports. 2022; 2(1): 22-32.
  13. Saravani S., Ghaffari M., Aali H. Hydroalcoholic extract of Psidium guajava plant and bone marrow cells: examination and analysis of effects. Cellular, Molecular and Biomedical Reports. 2024; 4(3): 177-1888.
  14. Fazeli-Nasab B., Sirousmehr A., Mirzaei N., Solimani M. Evaluation of total phenolic, flavenoeid content and antioxidant activity of Leaf and Fruit in 14 different genotypes of Ziziphus mauritiana L. in south of Iran. Eco-Phytochemical Journal of Medicinal Plants. 2017; 4(4): 1-14.
  15. Mehrabi A.-A., Fazeli-Nasab B. In vitro culture of Allium scorodoprasum spp. Rotundum: callus induction, somatic embryogenesis and direct bulblet formation. International Journal of Agriculture and Crop Sciences. 2012; 4(1): 1-7.
  16. Nagarajan M., Kuruvilla G.R., Kumar K.S., Venkatasubramanian P. Pharmacology of Ativisha, Musta and their substitutes. Journal of Ayurveda and Integrative Medicine. 2015; 6(2): 121.
  17. Himaja N., Anitha K., Joshna A., Pooja M. Review article on health benefits of Cyperus rotundus. Indian Journal of Drugs. 2014; 2(4): 136-141.
  18. Rocha F.G., Brandenburg M.M., Pawloski P.L., Soley B.D.S., Costa S.C.A., Meinerz C.C., Baretta I.P., Otuki M.F., Cabrini D.A. Preclinical study of the topical anti-inflammatory activity of Cyperus rotundus L. extract (Cyperaceae) in models of skin inflammation. Journal of Ethnopharmacology. 2020; 254: 112709.
  19. Thiex N., Novotny L., Crawford A. Determination of ash in animal feed: AOAC official method 942.05 revisited. Journal of AOAC International. 2012; 95(5): 1392-1397.
  20. Deng S., Scott D., Garg U. Quantification of Five Clinically Important Amino Acids by HPLC-Triple TOF 5600 Based on Pre-column Double Derivatization Method. Methods in Molecular Biology. 2016; 1378: 47-53.
  21. Mao Z., Wang X., Li B., Jin J., Xu M., Liu Y., Di X. A simplified LC-MS/MS method for rapid determination of cycloserine in small-volume human plasma using protein precipitation coupled with dilution techniques to overcome matrix effects and its application to a pharmacokinetic study. Analytical and Bioanalytical Chemistry. 2017; 409(11): 3025-3032.
  22. Kundu S., Selvaraj R., Reddy K., Vikram Pr H., Gurupadayya B. Determination of ursolic acid in ethanolic extract of Rotheca serrata (L.) Steane & Mabb. by HPLC method. Natural Product Research. 2024: 1-7.
  23. Dindar C.K., Erkmen C., Uslu B., Goger N.G. The Development of Spectrophotometric and Validated Stability- Indicating RP-HPLC Methods for Simultaneous Determination of Ephedrine HCL, Naphazoline HCL, Antazoline HCL, and Chlorobutanol in Pharmaceutical Pomade Form. Combinatorial Chemistry & High Throughput Screening. 2020; 23(10): 1090-1099.
  24. FAOSTAT, FAO Statistical Databases 2014. Available at: http://faostat3.fao.org/. Accessed June. 07, 2016., 2021;
  25. Mossé J., Huet J., Baudet J. The amino acid composition of wheat grain as a function of nitrogen content. Journal of cereal science. 1985; 3(2): 115-130.
  26. Mune M.M., Minka S., Mbome I.L. Chemical composition and nutritional evaluation of a cowpea protein concentrate. global advanced journal of food science and technology. 2013; 2(3): 35-43.
  27. Vioque J., Alaiz M., Girón-Calle J. Nutritional and functional properties of Vicia faba protein isolates and related fractions. Food Chemistry. 2012; 132(1): 67-72.
  28. Aid A., Mohammed B.H., Mahmed A.M. Manufacturing of baby's food from local sources and study of chemical and sensory properties. Plant Archives. 2020; 20(1): 485–488.
  29. Mohammed B.H., Mohamed A.M., kamal Ali H. Extending the shelf life of beef burgers by adding parsley seed extracts. International Journal of Agricultural and Statistical Sciences. 2023; 2023: 1305-1315.
  30. Mahmed A.M., Hahidh B., Aid A., Yosef H., Safaa H. Sensory Evaluation of Jam Produced from Hearts of Palm Kestaweey Varieties of Phoenix Dactylifera, L. Indian Journal of Public Health Research & Development. 2019; 10(8).
  31. Baur F.J., Ensminger L.G. The association of official analytical chemists (AOAC). Journal of the American Oil Chemists' Society. 1977; 54(4): 171-172.
  32. Consultation J. Protein quality evaluation. Food and Agriculture Organization. 1991; 51: 1-66.
  33. Mahmedand A.M., Obeed A.A. The biological of role of palm extract in varieties in the growth of cancer cell line L20B and cancer line Mcf7 and application in some therapeutic foods. Paper presented at the AIP Conference Proceedings. 2020
  34. Wang M., Hettiarachchy N., Qi M., Burks W., Siebenmorgen T. Preparation and functional properties of rice bran protein isolate. Journal of Agricultural and Food Chemistry. 1999; 47(2): 411-416.
  35. Carabetta S., Di Sanzo R., Fuda S., Muscolo A., Russo M. A Predictive Model to Correlate Amino Acids and Aromatic Compounds in Calabrian Honeys. Foods. 2023; 12(17).
  36. Lippi I., Perondi F., Pierini A., Bartoli F., Gori E., Mariti C., Marchetti V. Essential and Non-Essential Amino Acids in Dogs at Different Stages of Chronic Kidney Disease. Veterinary Sciences. 2022; 9(7).
  37. Lu Y., Wang Y., Liang X., Zou L., Ong C.N., Yuan J.M., Koh W.P., Pan A. Serum Amino Acids in Association with Prevalent and Incident Type 2 Diabetes in A Chinese Population. Metabolites. 2019; 9(1).
  38. Taha E.A., Al-Kahtani S., Taha R. Protein content and amino acids composition of bee-pollens from major floral sources in Al-Ahsa, eastern Saudi Arabia. Saudi Journal of Biological Sciences. 2019; 26(2): 232-237.
  39. Barakat H. Nutritional and Rheological Characteristics of Composite Flour Substituted with Baobab (Adansonia digitata L.) Pulp Flour for Cake Manufacturing and Organoleptic Properties of Their Prepared Cakes. Foods. 2021; 10(4).
  40. Batool R., Ramzan R., Raza A., Aziz M., Rohi M., Naeem A., Nusrat W., Razi A., Saleem B., Batool W., Bilal A., Khadijah B. Dietary supplementation of black cumin (Nigella sativa) meal in the formulation of protein-enriched cookies, further in vivo evaluation of protein quality with physicochemical and organoleptic characterization. Food Science & Nutrition. 2024; 12(10): 7405-7416.
  41. Hamden Z., El-Ghoul Y., Alminderej F.M., Saleh S.M., Majdoub H. High-Quality Bioethanol and Vinegar Production from Saudi Arabia Dates: Characterization and Evaluation of Their Value and Antioxidant Efficiency. Antioxidants (Basel). 2022; 11(6).
  42. Sanyukta, Brar D.S., Pant K., Kaur S., Nanda V., Nayik G.A., Ramniwas S., Rasane P., Ercisli S. Comprehensive Analysis of Physicochemical, Functional, Thermal, and Morphological Properties of Microgreens from Different Botanical Sources. ACS Omega. 2023; 8(32): 29558-29567.
  43. Cheruth A.J., Kurup S.S., Subramaniam S. Variations in Hormones and Antioxidant Status in Relation to Flowering in Early, Mid, and Late Varieties of Date Palm (Phoenix dactylifera) of United Arab Emirates. Scientific World Journal. 2015; 2015: 846104.
  44. Dghaim R., Hammami Z., Al Ghali R., Smail L., Haroun D. The Mineral Composition of Date Palm Fruits (Phoenix dactylifera L.) under Low to High Salinity Irrigation. Molecules. 2021; 26(23).
  45. Gu F., Gomez E.C., Chen J., Buas M.F., Schlecht N.F., Hulme K., Kulkarni S.V., Singh P.K., O'Connor R., Ambrosone C.B., Singh A.K., Wang J. Genes Relevant to Tissue Response to Cancer Therapy Display Diurnal Variation in mRNA Expression in Human Oral Mucosa. Journal of Circadian Rhythms. 2021; 19: 8.
  46. Molina-Montes E., Rodriguez-Barranco M., Ching-Lopez A., Artacho R., Huerta J.M., Amiano P., Lasheras C., Moreno-Iribas C., Jimenez-Zabala A., Chirlaque M.D., Barricarte A., Lujan-Barroso L., Agudo A., Jakszyn P., Quiros J.R., Sanchez M.J. Circadian clock gene variants and their link with chronotype, chrononutrition, sleeping patterns and obesity in the European prospective investigation into cancer and nutrition (EPIC) study. Clinical Nutrition. 2022; 41(9): 1977-1990.
  47. Wang Q., Liu H., Wang Z., Chen Y., Zhou S., Hu X., Xu Y., Zhang X., Wang Y., Gao Y., Li S. Circadian gene Per3 promotes astroblastoma progression through the P53/BCL2/BAX signalling pathway. Gene. 2024; 895: 147978.