Antimicrobial Efficacy of Melissa officinalis Extract Against Pathogenic Bacterial Isolates: Inhibition of Biofilm Formation and Adhesion

Document Type : Research Paper

Authors

1 College of Dentistry, Kufa University, Najaf, Iraq

2 Department of Basic and Medical Science, Babylon University, Pharmacy College, Al-Mustaqbal University, Iraq

3 Department of Microbiology, Hammurabi College of Medicine, University of Babylon, Babylon, Iraq

4 College of Pharmacy, Al-Mustaqbal University, Hillah, Iraq

5 Department of Basic and Medical Science, College of Nursing, University of Babylon, Iraq

Abstract

Melissa officinalis L., commonly known as lemon balm, is recognized for its broad-spectrum antimicrobial properties against various pathogenic bacteria, suggesting potential therapeutic benefits for treating infectious diseases.  This study aimed to investigate the inhibitory effects of M. officinalis extract on human pathogenic bacteria and to assess its ability to prevent bacterial biofilm formation and adhesion. The antibacterial activity of the aqueous extract of M. officinalis was evaluated using disc-diffusion and agar-well diffusion methods. The antimicrobial efficacy of the extract was compared with that of standard antibiotics. Additionally, tests for adherence and biofilm formation were conducted. The M. officinalis extract demonstrated inhibitory zones ranging from 25 to 35 mm against all tested microorganisms. While some bacterial isolates were susceptible to imipenem, the majority exhibited resistance. Notably, certain isolated bacteria displayed strong adhesion and biofilm formation in response to the extract, whereas most Gram-negative bacteria showed moderate adherence and biofilm activity. The findings indicate that M. officinalis extracts are highly effective against a range of clinical isolates, including those associated with urinary tract infections. This suggests that these extracts may offer a more effective alternative to conventional antibiotics, particularly in combating bacterial adhesion and biofilm development.

Keywords

Main Subjects


  1. Rahmani A.F., Sakandari M.N., Mirzaei A., Uçar E. Investigating the Physiological Responses and the Expression of Effective Genes in Steviol Glycosides Production in Stevia (Stevia rebaudiana). Agrotech Ind Crops. 2024; 4(3): 126-133. doi: 10.22126/atic.2024.10536.1144
  2. Fabricant D.S., Farnsworth N.R. The Value of Plants Used in Traditional Medicine for Drug Discovery. Environ Health Perspectives. 2001; 109: 69–75.
  3. WHO Global Report on Traditional and Complementary Medicine 2019.
  4. Ghosh S., Choudhury S. Ethnobotanical Study of Medicinal Plants Used by Indigenous People. J Ethnopharmacol. 2018; 225: 1-12.
  5. Newman D.J., Cragg G.M. Natural Products as Sources of New Drugs Over the Last 25 Years. J Natural Prod. 2007; 70(3): 461-477.
  6. De Silva E.T., Gunasekara K. Phytochemicals: A Review. J Med Plants Res. 2010; 4(25): 2743-2750.
  7. Petrisor G., Motelica L., Narcisa Craciun L., Cristian Oprea O., Ficai D., Ficai A. Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems-A Review. Int J Mol Sci. 2022; 25;23(7):3591. doi: 10.3390/ijms23073591.
  8. Draginic N., Jakovljevic V., Andjic M., Jeremic J., Srejovic I., Rankovic M., Tomovic M., Nikolic Turnic T., Svistunov A., Bolevich S., Milosavljevic I. Melissa officinalis L. as a Nutritional Strategy for Cardioprotection.. Front Physiol. 2021; 12:661778. doi: 10.3389/fphys.2021.661778.
  9. Miraj S., Kopaei R., Kiani S. Melissa officinalis L: A Review Study With an Antioxidant Prospective. J Evid Based Complementary Altern Med. 2017; 22(3):385-394.
  10. Petrisor G., Motelica L., Craciun L.N., Oprea O.C., Ficai D., Ficai A. Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems-A Review. Int J Mol Sci. 2022; 23(7):3591. doi: 10.3390/ijms23073591.
  11. Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int J Biochem Cell Biol. 2007; 39(1): 44-84.
  12. Yfanti P., Lazaridou P., Boti V., Douma D., Lekka M.E. Enrichment of Olive Oils with Natural Bioactive Compounds from Aromatic and Medicinal Herbs: Phytochemical Analysis and Antioxidant Potential. Molecules. 2024;29(5):1141. doi: 10.3390/molecules29051141.
  13. Hirai M., Ota Y., Ito M. Diversity in principal constituents of plants with a lemony scent and the predominance of citral. J Nat Med. 2022;76(1):254-258. doi: 10.1007/s11418-021-01553-7.
  14. Malaiappan S., P T P., Niveditha S. Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Catharanthus roseus Extract: A Novel Approach. Cureus. 2024;16(5):e60407. doi: 10.7759/cureus.60407.
  15. Forbes B.A., Sahm D.F., Weissfeld A.S. Baily and Scott's Diagnostic Microbiology. Elsevier Health Sci. 2007.
  16. Zhang X., Wang Y., Zhu H., Zhong Z. Functional and Transcriptome Analysis of Streptococcus pyogenes Virulence on Loss of Its Secreted Esterase. Int J Mol Sci. 2022;23(14):7954. doi: 10.3390/ijms23147954.
  17. Nickerson K.P., Llanos-Chea A., Ingano L., Serena G., Miranda-Ribera A., Perlman M., Lima R., Sztein M.B., Fasano A., Senger S., Faherty C.S. A Versatile Human Intestinal Organoid-Derived Epithelial Monolayer Model for the Study of Enteric Pathogens. Microbiol Spectr. 2021;9(1):e0000321. doi: 10.1128/Spectrum.00003-21.
  18. O'Toole G.A., Kolter R. Initiation of Biofilm Formation in Pseudomonas aeruginosa Monocultures and Cocultures. J Bacteriol. 1998; 180(21):5595-5599.
  19. Stepanovic S., Vuković D., Hola V., Bonaventura G.DI., Djukić S., Cirković I., Ruzicka F. Quantification of Biofilm Formation by Staphylococci. Europ J Clinical Microbiol Infectious Diseases. 2007; 26(11):731-734.
  20. Al-Hindy et al. "Antimicrobial Activity of Melissa officinalis Extracts. J Ethnopharmacol. 2021; 267:113454.
  21. Fabricant D.S., Farnsworth N.R. The Value of Plants Used in Traditional Medicine for Drug Discovery. Environ Health Perspectives. 2001;109(Suppl 1):69–75.
  22. WHO Global Report on Traditional and Complementary Medicine. 2019.
  23. Newman D.J., Cragg G.M. Natural products as sources of new drugs over the last 25 years. J Natural Prod. 2007;70(3):461-477.
  24. Silva B.N., Cadavez V., Caleja C., Pereira E., Calhelha R.C., Añibarro-Ortega M., Finimundy T., Kostić M., Soković M., Teixeira J.A., Barros L., Gonzales-Barron U. Phytochemical Composition and Bioactive Potential of Melissa officinalis L., Salvia officinalis L. and Mentha spicata L. Extracts. Foods. 2023 Feb 23;12(5):947. doi: 10.3390/foods12050947.
  25. O'Toole G.A., Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. J Bacteriol. 1998;180(21):5595-5599.
  26. Stepanovic S., Vuković D., Hola V., Bonaventura G.Di., Djukić S., Cirković I., Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Europ J Clinical Microbiol Infectious Diseases. 2007;26(11):731-734.
  27. Valko M., Leibfritz D., Moncol J., T D Cronin M., Mazur M., Telser J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int J Biochem Cell Biol. 2007;39(1):44-84.
  28. Farhat G., Cheng L., Al-Dujaili E.A.S., Zubko M. Antimicrobial Potential of Pomegranate and Lemon Extracts Alone or in Combination with Antibiotics against Pathogens. Int J Mol Sci. 2024;25(13):6943. doi: 10.3390/ijms25136943.