Comparison of the Effects of Cold Argon Plasma, Air, and Plasma-activated Water on the Shelf Life of Oyster mushrooms

Document Type : Research Paper

Authors

1 Department of Food Science and Technology, VaP.C., Islamic Azad University, Tehran, Iran

2 Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran

Abstract

This study investigates the effects of three non-thermal technologies-cold argon plasma (CArP), plasma-activated air (CAP), and plasma-activated water (PAW) on the shelf life and quality of oyster mushrooms. The results demonstrate that all three methods significantly reduce microbial load and improve physicochemical properties, including moisture retention, texture, and acidity. PAW emerged as the most effective treatment, with a 99% reduction in microbial load and superior preservation of moisture and texture over a 14-day storage period. The reactive oxygen and nitrogen species (RONS) generated during PAW treatment were key to its antimicrobial efficacy and structural preservation. While the study highlights the potential of cold plasma as a sustainable alternative to conventional preservation methods, further research is needed to evaluate its long-term effects on nutritional value, flavor, and texture, as well as its comparative effectiveness against traditional techniques. These findings contribute to the growing body of research on non-thermal food preservation and underscore the need for extended observation periods to assess commercial viability.

Keywords

Main Subjects


  1. Mayirnaoa H.S., Sharmaa K., Jangira P., Kaurb S., Kapoora R. Journal of Future Foods. 2025;5(4):342-60.
  2. Shankar B.L., Veena T.R., Pawar S., Gowda A., Kadadevaramath A.R. Journal Business and Systems Research. 2024;18(6):539-54
  3. Jarial R.S., Jarial K., Bhatia J.N. Heliyon. 2024 Feb 19. https://doi.org/10.1016/j.heliyon.2024.e26539
  4. Xia R., Hou Z., Xu H., Li Y, Sun Y., Wang Y., Zhu J., Wang Z., Pan S., Xin G. Crit Rev Food Sci Nutr. 2024;64(23):8445-63.
  5. Mahajan P.V., Caleb O.J., Singh Z., Watkins C.B., Geyer M. Philos Trans A Math Phys Eng Sci. 2014;372(2017):20130309. https://doi.org/10. 1098/rsta.2013.0309
  6. Charles F., Vidal V., Olive F., Filgueiras H., Sallanon H. Postharvest Biology Technololgy. 2017;129:1-10. https://doi.org/10.1016/j. postharvbio .2017.03.008
  7. Moradi C., Hosseini E., Rousta E. Postharvest Biol Technol. 2025;222:113356. https://doi.org/10.1016/j.postharvbio.2024.113356
  8. Mahnot N.K., Mahanta C.L., Farkas B.E., Keener K.M., Misra N.N. Food Control. 2019;106:106678. https://doi.org/10.1016/j.foodcont. 2019.06 .004
  9. Sharma V., Singh P., Singh A. Future Postharvest and Food. 2024;1(3):317-33. https://doi.org/10.1002/fpf2.12029
  10. Tiwari B., Dinesh S., Prithiviraj V., Yang X., Roopesh M.S. 2025;69:106676. https://doi.org/10.1016/j.jwpe.2024.106676
  11. Rashidi M., Keshavarz M. International Journal Food Science Technology. 2013;48(5):1016-21. https://doi.org/10.1111/ijfs.12070
  12. Subrahmanyam K., Gul K., Sehrawat R., Allai FM. Food Biosci. 2023;52:102425. https://doi.org/10.1016/j.fbio.2023.102425
  13. Iranian National Standards Institute. 2012. Standard No. 10899-1.
  14. . Iranian National Standards Organization. 2012. Standard No. 5271.
  15. Sikora A., Stachowiak B., Chudoba T. AIP Conference Proceedings. 2017;1868(1): 020006. https://doi.org/10.1063/1.4995083
  16. Ribeiro C., Vicente A.A., Teixeira J.A., Miranda C. 2007;44(1):63-70. https://doi.org/:10.1016/j.postharvbio.2006.11.016.
  17. Bai Y., Wang Y., Zhang J., Lu Q. Effects of CP on the physicochemical properties and microbial inactivation of grape water. Food Research International. 2023;162: 111923.
  18. https://doi.org/10.1016/j.foodres.2022.111923
  19. Baniya H.B., Guragain R.P., Panta G.P., Dhungana S., Chhetri G.K., Joshi U.M., Subedi D.P. Journal of Chemistry. 2021;1-2. https://doi.org/10.3390/horticulturae9050568
  20. Mahajan P.V., Caleb O.J., Singh Z., Watkins C.B., Geyer M. 2014;372(2017):20130309. https://doi.org/:10.1098/rsta.2013.0309.
  21. Kader A. Perishables Handling Quarterly. 2001;106(4):6. https://ucanr.edu/datastoreFiles/234-104.pdf
  22. Chavan P., Singh G.P., Yadav R. CRC Press. 2025;75-87.
  23. Chen Y., Chen Y., Jiang L., Wang J., Zhang W. Food Chemistry. 2025;464:141670.
  24. Xu H., Wei Z., Quan L., Huang Y., Zhang H., Shao M., Xie K. 2024. https://doi.org/: 10.1109/TPS.2024.3492042
  25. Mohammadi M.A., Naghibzadeh S.T., Baharlounezhad F., Zakerhamidi M.S. https://doi.org/10.21203/rs.3.rs-3863243/v1
  26. Gupta R.K., Guha P., Srivastav P.P. 2023. https://doi.org/ 10.1002/ppap.202300204
  27. https://doi.org/10.1016/j.susmat.2024.e00887
  28. El-Reda A., Mahmoud M.A., Khalaf M., Saber A.A., El-Hossary F.M. Sohag Journal of Sciences. 2024;9(2):190-7. https://doi.org/10.21608 /sjsci.2024.247829.1146
  29. Subrahmanyam K., Gul K., Sehrawat R., Allai F.M. Food Bioscience. 2023;52: 102425. https;//doi.org/10.1016/j.fbio.2023.102425
  30. Sreelakshmi V.P., Vendan S.E., Negi P.S. Postharvest Biology and Technology. 2025;220:113322. https://doi.org/10.1016/j.postharvbio. 2024.113322
  31. Hu J., Zhang Y., Pan W, Han Q., Wei Y., Li Y., Hu Y., Ying X., Armani A., Guidi A., Deng S. Food Chemistry. 2025;464:141590. https://doi.org/10.1016/j.foodchem.2024.141590
  32. Abdullah Z., Zaaba S.K., Mustaffa M.T. Authorea Preprints. 2024. https://doi.org/10.1016/j.ifset.2024.103845
  33. Nateghi L., Hosseini E., Mirmohammadmakki F. Iranian Journal of Microbiology. 2024;16(1):62. https://doi: 10.18502/ijm.v16i1.14872
  34. Patil U Palamae S., Nazeer R.A., Zhang B., Benjakul S. Food Control. 2024;164:110591. https://doi.org/10.1016/j.foodcont.2024.110591
  35. Das S., Mishra B., Mohapatra S., Tripathi B.P., Kar S., Bhatt S. Physica Scripta. 2024;99(2):025601. https://DOI 10.1088/1402-4896/ad1869
  36. Than H.A., Nguyen T.T., Do N.K., Tran M.A., Pham TH. Food and Bioprocess Technolog y. 2024;13:1-0. https://doi.org/10.1007/s11947-024-03476-z
  37. Sun A., Xiang W., Chen Z., Zhang C., Li W., Gong X. International Journal Food Microbiol. 2017;260:62-68. https://doi:10.1016/j. ijfoodmicro.2017.08.014
  38. Zhou R., Zhou R., Wang P., Zhang L., Xu S., Hou X. Journal Food Process Preserv. 2021;45(7):e15592. https://doi:10.1111/jfpp.15592
  39. Ji Y., Zhang S., Ji H., Han Y., Sun H. Foods. 2021;10(11):3504. https://doi:10.3390/foods10113504
  40. Sruthi N.U., Josna K., Pandiselvam R., Kothakota A., Gavahian M., Khaneghah A.M. Food Chemistry. 2022;30(368):130809. https://doi.org/10.1016/j.foodchem.2021.130809
  41. Guo Y., Xia S., Shi C., Ma N., Pei F., Yang W., Hu Q., Kimatu B.M., Fang D. Foods. 2024;13(21):3393. https://doi.org/10.3390/foods13213393
  42. Xu Y., Tian Y., Ma R., Liu Q., Zhang J. Food Chemistry. 2016;15(197):436-44. https://doi.org/10.1016/j.foodchem.2015.10.144
  43. Medvecká V., Mošovská S., Mikulajová A., Zahoranová A. International Journal Food Engineer. 2024;20(1):27-35. https://doi.org/10. 1515/ijfe-2023-0077
  44. Kader A. 2001;106(4):6. https://ucanr.edu/datastoreFiles/234-104.pdf
  45. Saedi Z., Kuddushi M., Gao Y., Panchal D., Zeng B., Pour S.E., Shi H., Zhang X.. Sustainable Materials and Technologies. 2024;40:e00887.