Exploring Phytochemical Diversity and Physiological Attributes of Juniper Species in Iran

Document Type : Research Paper

Authors

1 Department of Horticultural Sciences, Shir.C., Islamic Azad University, Shirvan, Iran

2 Department of Agriculture Science, Shir.C., Islamic Azad University, Shirvan, Iran

Abstract

Investigating the phytochemical and physiological changes in juniper species is essential for identifying bioactive compounds and enhancing their medicinal uses. A 2022-2023 study evaluated the essential oil content and composition of three juniper species: Juniperus sabina L., J. polycarpos K.Koch, and J. communis L. This research was conducted in the Salouk area of North Khorasan, Iran (37° 19.0242' N, 57° 32.7232' E). Herbarium numbers were assigned by the Agricultural Research Center of North Khorasan: J. communis (Khsh.CU/J. communis 101), J. polycarpos (Khsh.CU/J. polycarpos 102), and J. sabina L. (Khsh.CU/J. sabina 103). Essential oil content per 100 g of dried plant material was 0.5 g for J. polycarpos, 1.7 g for J. sabina, and 0.54 g for J. communis in branches; in fruits, the values were 2.36 g, 3.34 g, and 2.02 g, respectively. J. sabina had a significantly higher essential oil content compared to other species, with 29 compounds in its branches and 24 in its fruits identified through Gas Chromatography-Mass Spectrometry. In contrast, J. polycarpos contained 19 compounds in branches and 36 in fruits. The fruit extracts showed a significantly higher average percentage of essential oil than branch extracts across all species, with the fruit of J. communis containing the highest rate at 98.93%. In the species J. communis, the major compounds in the branch were Trans-pinene (15%), α-phellandrene (14.97%), α-pinene (11.28%) and terpinolene (6.66%) and the major compounds in the fruit were α-phellandrene (22.19%), Hexanoic acid (13.50%), β-pinene (8.93%) and sabinene (7.37%). In the species J. polycarpos, the major compounds in the branch were benzaldehyde (20.03%), δ-3-carene (5.48%) and Terpinolene (3.71%) and the major compounds in the fruit were Thuja-2,4(10)-diene (43.35%), n-heptanol (6.13%) and 1-octen-3-ol (5.40%). In the species J. sabina, the major compounds in the branch were sabinene (12.78%), camphene (12.12%), terpinolene (8.4%) and α-terpinene (6.78%) and the major compounds in the fruit were 1-octen-3-ol (35.27%), α-pinene (7.65%), camphene (5.78%) and Cis-sabinene hydrate (5.15%). This study highlights the potential of ripe fruits in Juniper species as a valuable source of essential oils and emphasizes the critical role of specific genes, particularly the pin gene, in enhancing their biosynthesis.

Keywords

Main Subjects


  1. Zheljazkov V.D., Semerdjieva I., De Martino L., Cantrell C.L., Astatkie T., Francolino R., Martino M., Radoukova T., De Feo V., Maneva V. Juniperus sabina L. essential oils and podophyllotoxin seasonal and interpopulation dynamics. Industrial Crops and Products. 2024; 219:119128. https://doi.org/10.1016/j.indcrop.2024.119128
  2. Ghasemnezhad A., Ghorbanzadeh A., Sarmast M.K., Ghorbanpour M. A review on botanical, phytochemical, and pharmacological characteristics of Iranian junipers (Juniperus spp.). Plant-derived Bioactives: Production, Properties and Therapeutic Applications. 2020; 493-508. https://doi.org/10.1007/978-981-15-1761-7_20
  3. Kannenberg S.A., Driscoll A.W., Malesky D., Anderegg W.R. Rapid and surprising dieback of Utah juniper in the southwestern USA due to acute drought stress. Forest Ecology and Management. 2021; 480:118639. https://doi.org/10.1016/j.foreco.2020.118639
  4. Boratynski A., Donmez A.A., Bou Dagher-Kharrat M., Romo Á., Tan K., Ok T., Iszkulo G., Sobierajska K., Marcysiak K. Biology and ecology of Juniperus drupacea Labill. Dendrobiology. 2023; 90: 1-29. https://doi.org/10.12657/denbio.090.001
  5. Ahad B., Shahri W., Rasool H., Reshi Z., Rasool S., Hussain T. Medicinal plants and herbal drugs: An overview. Medicinal and Aromatic Plants: Healthcare and Industrial Applications. 2021;1-40. https://doi.org/10.1007/978-3-030-58975-2_1
  6. Espinosa-Leal C.A., Mora-Vásquez S., Puente-Garza C.A., Alvarez-Sosa D.S., García-Lara S. Recent advances on the use of abiotic stress (water, UV radiation, atmospheric gases, and temperature stress) for the enhanced production of secondary metabolites on in vitro plant tissue culture. Plant Growth Regulation. 2022; 97:1-20. https://doi.org/10.1007/s10725-022-00810-3
  7. Mansinhos I., Gonçalves S., Romano A. 2024. How climate change-related abiotic factors affect the production of industrial valuable compounds in Lamiaceae plant species: a review. Frontiers in Plant Science. A. 15:1370810. https://doi.org/10.3389/fpls.2024.1370810
  8. Dodoš T., Novaković J., Vujisić L., Marin P.D., Rajčević N. Geographic variability of winter savory essential oil. Industrial Crops and Products. 2024; 210:118167. https://doi.org/10.1016/j.indcrop.2024.118167
  9. Li Y., Kong D., Fu Y., Sussman M.R., Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry. 2020; 148:80-89. https://doi.org/10.1016/j.plaphy.2020.01.006
  10. Gonçalves S., Mansinhos I., Romano A. Influence of biotic and abiotic factors on the production and composition of essential oils. Essential oils: Extraction Methods and Applications. 2023; 69-97. https://doi.org/10.1002/9781119829614.ch4
  11. Spengler G., Gajdács M., Donadu M.G., Usai M., Marchetti M., Ferrari M., Mazzarello V., Zanetti S., Nagy F., Kovács R. Evaluation of the antimicrobial and antivirulent potential of essential oils isolated from Juniperus oxycedrus L. ssp. macrocarpa aerial parts. Microorganisms. 2022; 10:758. https://doi.org/10.3390/microorganisms10040758
  12. Ghorbanzadeh A., Ghasemnezhad A., Sarmast M.K., Ebrahimi S.N. An analysis of variations in morphological characteristics, essential oil content, and genetic sequencing among and within major Iranian Juniper (Juniperus spp.) populations. Phytochemistry. 2021; 186:112737. https://doi.org/10.1016/j.phytochem.2021.112737
  13. Gutiérrez-Larruscain D., Vargas P., Fernández-Mazuecos M., Pausas J.G. Phylogenomic analysis reveals the evolutionary history of Paleartic needle-leaved junipers. Molecular Phylogenetics and Evolution. 2024; 199:108162. https://doi.org/10.1016/j.ympev.2024.108162
  14. Mehdizadeh L., Taheri P., Ghasemi Pirbalouti A., Moghaddam M. Phytotoxicity and antifungal properties of the essential oil from the Juniperus polycarpos var. turcomanica (B. Fedsch.) RP Adams leaves. Physiology and Molecular Biology of Plants. 2020; 26:759-771. https://doi.org/10.1007/s12298-020-00776-4
  15. Shafi A., Hassan F., Zahoor I., Majeed U., Khanday F.A. Biodiversity, management and sustainable use of medicinal and aromatic plant resources. Medicinal and Aromatic Plants: Healthcare and Industrial Applications. 2021;85-111.
  16. Radoukova T., Zheljazkov V., Semerdjieva I., Dincheva I., Stoyanova A., Kačániová M., Marković T., Radanović D., Astatkie T., Salamon I. Differences in essential oil yield, composition, and bioactivity of three juniper species from Eastern Europe. Industrial Crops and Products. 2018; 124:643-652. https://doi.org/10.1016/j.indcrop.2018.08.012
  17. Farrokhi H., Asgharzadeh A., Samadi M.K. Yield and qualitative and biochemical characteristics of saffron (Crocus sativus L.) cultivated in different soil, water, and climate conditions. Italian Journal of Agrometeorology. 2021; 2:43-55. https://doi.org/10.36253/ijam-1216
  18. Aghighi Shahverdi M., Omidi H., Tabatabaei S.J. Plant growth and steviol glycosides as affected by foliar application of selenium, boron, and iron under NaCl stress in Stevia rebaudiana Bertoni. Industrial Crops and   Products. 2018; 125:408-415. https://doi.org/10.1016/j.indcrop.2018.09.029
  19. Feng X., Zhang W., Wu W., Bai R., Kuang S., Shi B., Li D. Chemical composition and diversity of the essential oils of Juniperus rigida along the elevations in Helan and Changbai Mountains and correlation with the soil characteristics. Industrial Crops and Products. 2021; 159:113032. https://doi.org/10.1016/j.indcrop.2020.113032
  20. Salamon I., Kryvtsova M., Hrytsyna M. Chemical and Phyto-therapeutically properties of essential oils from three Juniperus species. Medicinal Plants-International Journal of Phytomedicines and Related Industries. 2020; 12:220-226. https://doi.org/10.5958/0975-6892.2020.00029.5
  21. Zouaoui Z., Ennoury A., Nhhala N., Roussi Z., Kabach I., Nhiri M. Juniperus oxycedrus L. phytochemistry and pharmacological properties: A review. Scientific African. 2024; 26:e02361. https://doi.org/10.1016/j.sciaf.2024.e02361
  22. Kazemi S.Y., Nabavi J., Zali H., Ghorbani J. Effect of altitude and soil on the essential oil’s composition of Juniperus communis. Journal of Essential Oil-Bearing Plants. 2017; 20:1380-1390. https://doi.org/10.1080/0972060X.2017.1387080
  23. Melero-Bravo E., Cerro-Ibáñez N., Sánchez-Vioque R., de Elguea-Culebras G.O. Juniperus communis L. essential oils in the Natura 2000 site ‘Serranía de Cuenca’(Central Spain). Biochemical Systematics and Ecology. 2024; 113:104789. https://doi.org/10.1016/j.bse.2024.104789
  24. Fejér J., Gruľová D., Eliašová A., Kron I., De Feo V. 2018. Influence of environmental factors on content and composition of essential oil from common juniper ripe berry cones (Juniperus communis L.). Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 152:1227-1235. https://doi.org/10.1080/11263504.2018.1435577
  25. Zheljazkov V.D., Cantrell C.L., Semerdjieva I., Radoukova T., Stoyanova A., Maneva V., Kačániová M., Astatkie T., Borisova D., Dincheva I. Essential oil composition and bioactivity of two Juniper species from Bulgaria and Slovakia. Molecules. 2021; 26:3659. https://doi.org/10.3390/molecules26123659
  26. De Sousa D.P., Damasceno R.O.S., Amorati R., Elshabrawy H.A., de Castro R.D., Bezerra D.P., Nunes V.R.V., Gomes R.C., Lima T.C. Essential oils: Chemistry and pharmacological activities. Biomolecules. 2023; 13:1144. https://doi.org/10.3390/biom13071144
  27. Vaičiulytė V., Ložienė K. Variation of chemical and morphological characters of leaves and unripe cones in Juniperus communis. Botanica Lithuanica. 2013; 19:37-47. https://doi.org/10.2478/botlit-2013-0005
  28. Mehrabi A., Mahmoudi R., Khedmati Morasa H., Mosavi S., Kazeminia M., Attaran Rezaei F., Vahidi R. Study of chemical composition, antibacterial and antioxidant activity of thyme leaves and stems essential oil. Journal of Medicinal Plants and By-Products. 2022; 11(2):253-263.‏ https://doi.org/10.22092/jmpb.2021.353440.1323
  29. Pajohi Alamoti M., Bazargani-Gilani B., Mahmoudi R., Reale A., Pakbin B., Di Renzo T., Kaboudari A. Essential oils from indigenous Iranian plants: a natural weapon vs. multidrug-resistant Escherichia coli. Microorganisms. 2022; 10(1):109.‏ https://doi.org/10.3390/microorganisms10010109
  30. Mahmoudi R., Kosari M., Barati S. Phytochemical and biological properties of Ferula sharifi essential oil. Journal of Biologically Active Products from Nature. 2013; 3(5-6), 331-338.‏ https://doi.org/10.1080/22311866.2013.867664