Antinociception Mechanisms Involved in the Hydroalcoholic Stem Bark Fraction of Xeroderris stuhlmannii (Taub.) Mendonça & E.P.Sousa (Fabaceae)

Document Type : Research Paper

Authors

1 Department of Animal Biology and Physiology, Faculty of Sciences, University of Douala, Douala-Cameroon

2 Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Science, University of Douala, Douala-Cameroon

3 Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Yaoundé-Cameroon

4 Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Science, University of Douala, Douala-Cameroon

Abstract

The present study aims to evaluate the antinociceptive activity of the hydroalcoholic fraction from the stem bark of Xeroderris stuhlmannii (Taub.) Mendonça & E.P.Sousa ??? and its probable mechanisms. The antinociceptive activity of HAFXS (50,100, and 200 mg/kg) was determined using the acetic acid writhing test (1%), formalin test (1%), tail immersion test (54 ± 1 °C), capsaicin (32 µg/ml), and cinnamaldehyde tests (0.66 %). Possible pathways mediating antinociceptive effects were evaluated using the following antagonists: propranolol, prazosin, yohimbine, atropine, glibenclamide, tetraethylammonium, naloxone, and L-NAME. The HAFXS (200 mg/kg) showed significant (P<0.0001) inhibition of abdominal writhing induced by acetic acid (72.24 %), formalin (in the first phase, 51.89 %), capsaicin (72.37 %), or cinnamaldehyde (56.48 %). HAFXS also significantly increased (p<0.0001) the latency time of tail immersion in hot water with a maximum time of 7.53 seconds. Pre-treatment with propranolol, yohimbine, and atropine did not reverse the antinociceptive activity of HAFXS. However, the previous injection of naloxone, glibenclamide, and prazosin to the animals significantly reduces the analgesic activity of HAFXS, indicating that antinociceptive activity is mediated by the opioid system and α1-adrenergic receptors. Furthermore, data analysis indicates that the mechanisms underlying HAFXS analgesia could also be linked to its ability to modulate TRPA1 and TRPV1 channels. This study demonstrates the antinociceptive properties of HAFXS, which act through various mechanisms.

Keywords

Main Subjects


  1. Raja S.N., Carr D.B., Cohen M., Finnerup N.B., Flor H., Gibson S., Keefe F.J., Mogil J.S., Ringkamp M., Sluka K.A., Song X., Stevens B., Sullivan M.D., Tutelman P.R., Ushida T., Vader K. The Revised International Association for the Study of Pain Definition of Pain: Concepts, Challenges and Compromises. Pain. 2020;161(9):1976-1982.
  2. Mohammadi S. A mini-review of antinociceptive effects of medicinal plants from Hamedan, Iran. Advances in Pharmacology and Clinical Trials. 2018;3(1):1-4.
  3. Andrade S.F., Cardoso L.G., Carvalho J.C., Bastos J.K. Anti-inflammatory and antinociceptive activities of extract, fractions and populnoic acid from the bark wood of Austroplenckia populnea. Journal of Ethnopharmacology. 2007;109(3):464-471.
  4. Guidelines on the Pharmacological Treatment of Persisting Pain in Children with Medical Illnesses. World Health Organization, Geneva, Classification of Pain in Children. 2012; Available on: https://www.ncbi.nlm.nih.gov/books/NBK138356/
  5. Gedin F., Skeppholm M., Burström K., Sparring V., Tessma M., Zethraeus N. Effectiveness, costs and cost-effectiveness of chiropractic care and physiotherapy compared with information and advice in the treatment of non-specific chronic low back pain: study protocol for a randomized controlled trial. Trials. 2017;18(1):613-617.
  6. Yougbare-Ziebrou M.N., Lompo M., Ouedraogo N., Yaro1 B., Guissoun I.P. Antioxidant, analgesic and anti-inflammatory activities of the leafy stems of Waltheria indica L.(Sterculiaceae). Journal of Applied Pharmaceutical Science. 2016; 6:124-129.
  7. Tatiya A.U., Saluja A.K., Kalaskar M.G., Surana S.J., Patil P.H. Evaluation of analgesic and anti-inflammatory activity of Bridelia retusa (Spreng) bark. Journal of Traditional and Complementary Medicine. 2017;7(4):441-451.
  8. Arbonnier M. Trees, shrubs and lianas of the dry zones of West Africa. CIRAD, Versailles, Margraf, Weikersheiml. 2004;541.
  9. Koster R., Anderson M., De Beer E.J. Acetic acid for analgesic screening. Federation Proceedings. 1959; 18:412-417.
  10. Tjolsen A., Berge D.G., Hunskaar S., Rosland J.H., Hole K. The formalin test: an evaluation of the method. Pain. 1992;51(1):5-17.
  11. Dongmo A.B., Nguelefack T.B., Lacaille-Dubois M.A. Antinociceptive and anti-inflammatory activities of Acacia pennata wild (Mimosaceae). Journal of Ethnopharmacology. 2005; 98:201-206.
  12. D’amour F.E., Smith D.L. A method for determining loss of pain sensation. The Journal of Pharmacology and Experimental Therapeutics. 1941;72(1):74-79.
  13. Mesia-Vela S., Souccar C., Lima-Landman M.T.R., Lapa A.J. Pharmacological study of Stachytarpheta cayennensis Vahl in rodents. Phytomedicine. 2004; 11:616-624.
  14. Rodrigues M.R.A., Luiz K.S.K., Thiago L.M.N., Carla F.S., Heros H., Moacir G.P., Pizzolatti M.G., Santos A.R.S., Baggio C.H., Werner M.F. Antinociceptive and antiinflammatory potential of extract and isolated compounds from the leaves of Salvia officinalis in mice. Journal of Ethnopharmacology. 2012; 139:519-526.
  15. Sawada L.A., Monteiro V.S.C., Rabelo G.R., Bueno Dias G., Da Cunha M., do Nascimento J.L.M., and Bastos G.N.T. Libidibia ferrea mature seeds promote antinociceptive effect by peripheral and central pathway: Possible involvement of opioid and cholinergic receptors. BioMed Research International. 2014; 2014(1):508725.
  16. Olorukooba A.B., Odoma S. Elucidation of the possible mechanism of analgesic action of methanol stem bark extract of Uapaca togoensis pax in mice. Journal of Ethnopharmacology. 2019; 245:112-156.
  17. Vanderlinde F.A., Landim H.F., Costa E.A., Galdino P.M., Maciel M.A., Anjos G.C., Malvar D.D., Côrtes W.D., Rocha F.F. Evaluation of the antinociceptive and anti-inflammatory effects of the acetone extract from Anacardium occidentale L. Brazilian Journal of Pharmaceutical Sciences. 2009; 45:437-442.
  18. Coderre T.J., Vaccarino A.L., Melzack R. Central nervous system plasticity in the tonic pain response to subcutaneous formalin injection. Brain Research. 1990; 535:155-158.
  19. Bispo A.M.D., Morene R.H., Franzotti E.M., Bomfi K., Arrigoni F., Moreno M.P.N. Antinociceptive and anti-oedematogenic effect of aqueous extract of Hypis pectinata leaves in experimental animals. Journal of Ethnopharmacology. 2001;76(1):81-86.
  20. Non-steroidal anti-inflammatory drugs: risk factors for aggravation of bacterial infections, knowledge by the community pharmacist of this potential risk. State Doctorate Thesis, Faculty of Medicine of Strasbourg, France, 2006, 89p.
  21. Déciga-Campos M., López-Muñoz F.J. Participation of the l-arginine–nitric oxide–cyclic GMP–ATP-sensitive K+ channel cascade in the antinociceptive effect of rofecoxib. European Journal of Pharmacology. 2004; 484(2-3):193-199.
  22. Zakaria Z.A., Sulaiman M.R., Somchit M.N., Justin E.C., DaudMat Jais A.M. The effects of l-arginine, D-arginine, l-NAME and methylene blue on Haruan (Channa striatus)-induced peripheral antinociception in mice. Journal of Pharmaceutical Sciences. 2005;8(2):199-206.
  23. Hafeshjani Z.K., Karami M., Biglarnia M. Nitric oxide in the hippocampal cortical area interacts with naloxone in inducing pain. Indian Journal of Pharmacology. 2012; 44:443-447.
  24. Ocana M., Cendan C.M., Cobos E.J., Entrena J.M., Baeyens J.M. Potassium channels and pain: present realities and future opportunities. European Journal of Pharmacology. 2004; 500:203-219.
  25. Aquino A.B., Silva D.C., Da matta C.B., Epifânio L.H., Aquino W.A., Santana P.G., Alexandre-Moreira A.E., Araujo-junior J.X. The antinociceptive and antiinflammatory activity of Aspidosperma tomentosum (Apocynaceae). The Scientific World Journal. 2013; 2013:218627.
  26. McNamara C.R., Mandel-Brehm J., Bautista D.M., Siemens J., Deranian K.L., Zhao M., Hayward N.J., Chong J.A., Julius D., Moran M.M., Fanger C.M. TRPA1 mediates formalin-induced pain. Proceedings of the National Academy of Sciences. 2007;104(33):13525-13530.
  27. Craig A.D., Sorkin L.S. Pain and analgesia. In: Encyclopedia of Life Sciences. England: John Wiley & Sons, Ltd: Chichester, 2011.
  28. De Santana M.T., de Oliveira M.G., Santana M.F., De Sousa D.P., Santana D.G., Camargo E.A., De Oliveira A.P., Da silva J.R. Citronellal, a monoterpene found in Lemongrass oil, attenuates the mechanical nociceptive response in mice. Pharmaceutical Biology. 2013;51(9):144-149.
  29. Millan M.J. Descending control of pain. Progress in Neurobiology. 2002; 66(2002):355-491.
  30. Mekuete K.L.B., Tsopgni D.T.W., Njokap K.A., Kojom W.J.J., Stark T.D., Fouokeng Y., Dongmo A.B., Azeufack T.L., Azebaze A.G.B. Rotenoids & isoflavones from Xeroderris stuhlmannii (Taub.) Mendonça & E.P. Souza and their biological activities. Molecules. 2023;28(6):2846.
  31. Kupeli E., Orhan I., Toker G., Yesilada E. Anti-inflammatory and antinociceptive potential of Maclura pomifera (Rafin.) Schneider fruit extracts and its major isoflavonoids, scandenone and auriculasin. Journal of Ethnopharmacology. 2006;107(2):169-174.