Unraveling the Genetic Diversity of Bitter Gourd (Momordica charantia L.) Using IRAP and REMAP Retrotransposon Markers

Document Type : Research Paper

Authors

1 Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran

2 Agricultural Biotechnology Research Institute, University of Zabol, Zabol, Iran

3 Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran

Abstract

The dispersion and abundance of mobile genetic elements in plant genomes have made them valuable molecular markers. Understanding genetic diversity is crucial for the organization and conservation of plant materials. This study aimed to investigate the genetic diversity of the economically and medicinally significant plant Momordica charantia L. (bitter gourd) using IRAP and REMAP markers. The identification of retrotransposon insertions was performed on seeds of 11 bitter gourd accessions collected from different regions. The results showed that most of the retrotransposons were active in the bitter gourd genome, and 71 polymorphic loci were generated using 6 IRAP primers, and 103 polymorphic loci were generated using 12 REMAP primers. The expected mean heterozygosity (He) was 0.24 for IRAP and 0.31 for REMAP. Cluster analysis based on REMAP and IRAP data, using the Dice similarity coefficient and the complete linkage algorithm, grouped the 11 genotypes into 5 major clusters. The genetic diversity obtained from the IRAP marker was 66% within populations and 34% between populations, while the REMAP marker showed 61% within populations and 39% between populations. The lowest genetic similarity was observed in the IRAP data between the Durga seeds from Hong Kong and the Kanarkee accession. In REMAP analysis, the least similarity occurred between the Long Green and Durga India baby accessions, as in REMAP-IRAP, it was noted between the Kanarkee and Durga Indian baby accessions. Based on these findings, it is recommended that the Kanarkee and Durga India baby accessions be utilized as parent lines in breeding programs.

Keywords

Main Subjects


  1. Ahmadi S. Antibacterial and antifungal activities of medicinal plant species and endophytes. Cellular, Molecular and Biomedical Reports. 2022; 2(2): 109-115.
  2. Sasani S., Rashidi Monfared S., Mirzaei A.R. Identification of some Echinophora platyloba miRNAs using computational methods and the effect of these miRNAs in the expression of TLN2 and ZNF521 genes in different human body organs. Cellular, Molecular and Biomedical Reports. 2024; 4(1): 43-53.
  3. Dey S.S., Singh A.K., Chandel D., Behera T.K. Genetic diversity of bitter gourd (Momordica charantia L.) genotypes revealed by RAPD markers and agronomic traits. Scientia Horticulturae. 2006; 109(1): 21-28.
  4. Raina K., Kumar D., Agarwal R. Promise of bitter melon (Momordica charantia) bioactives in cancer prevention and therapy. Seminars in Cancer Biology. 2016; 40-41: 116-129.
  5. Ning Y., Liu Z., Liu J., Qi R., Xia P., Yuan X., Xu H., Chen L. Comparative transcriptomics analysis of tolerant and sensitive genotypes reveals genes involved in the response to cold stress in bitter gourd (Momordica charantia L.). Scientific Reports. 2024; 14(1): 16564.
  6. Zafar-Ul-Hye M., Naeem M., Danish S., Khan M.J., Fahad S., Datta R., Brtnicky M., Kintl A., Hussain G.S., El-Esawi M.A. Effect of Cadmium-Tolerant Rhizobacteria on Growth Attributes and Chlorophyll Contents of Bitter Gourd under Cadmium Toxicity. Plants (Basel). 2020; 9(10).
  7. Saad D.Y., Soliman M.M., Baiomy A.A., Yassin M.H., El-Sawy H.B. Effects of Karela (Bitter Melon; Momordica charantia) on genes of lipids and carbohydrates metabolism in experimental hypercholesterolemia: biochemical, molecular and histopathological study. BMC Complementary and Alternative Medicine. 2017; 17(1): 319.
  8. Behera T., Bhardwaj D., Gautam K. Bitter Gourd: Breeding and Genomics. Vegetable Science. 2023; 50(Special Issue (06)): 189-207.
  9. Allentoft M.E., Collins M., Harker D., Haile J., Oskam C.L., Hale M.L., Campos P.F., Samaniego J.A., Gilbert M.T.P., Willerslev E. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proceedings of the Royal Society B: Biological Sciences. 2012; 279(1748): 4724-4733.
  10. Vessal S., Samiei L., Porsa H., Fazeli-Nasab B. Evaluation of Genetic Distance and Similarity among Native Genotypes of Seeded Watermelon (Citrullus lanatus var. citroides) in the Khorasan Region Using Microsatellite Markers. Agrotechniques in Industrial Crops. 2023; 3(2): 74-83.
  11. Sarhaddi Avval M., Fazeli-Nasab B., Pahlavan A., Mirzaei A.R. Investigating the Phylogenetic Relationships of the Iranian Honey Bee with Other Bee Breeds Worldwide Using the Cytochrome Oxidase I Region. [Research Article]. Gene, Cell and Tissue. 2025; 12(1): e157608.
  12. Jahantigh-Haghighi Z., Fahmideh L., Fazeli-Nasab B. Evaluation of Genetic Diversity in Different Cultivars of Tomato Using RAPD and ISSR Markers. Agricultural Biotechnology. 2020; 10(2): 29-41.
  13. Vaez-Sarvari H., Emamjomeh A., Fazeli-Nasab B. Evaluation of genetic diversity of Cantaloupe landraces based on the internal transcriptional spacer regions (ITS1, 4). International Journal of Vegetable Science. 2022: 1-13.
  14. Kalendar R., Flavell A.J., Ellis T.H.N., Sjakste T., Moisy C., Schulman A.H. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity. 2011; 106(4): 520-530.
  15. Vuorinen A.L., Kalendar R., Fahima T., Korpelainen H., Nevo E., Schulman A.H. Retrotransposon-Based Genetic Diversity Assessment in Wild Emmer Wheat (Triticum turgidum ssp. dicoccoides). Agronomy. 2018; 8(7): 107.
  16. Keshavarz Khoob M.G., Gharanjik S., Masoumiasl A., M. P., Abdollahi Mandoulakani B. Assessment of genetic diversity in Grapevine cultivars using IRAP and REMAP retrotransposon based markers. Genetic Novin. 2016; 11(4): 559-568.
  17. Aalami A., Karami N. The Study of Genetic Diversity in Iranian Rice Cultivars using ISSR, IRAP and REMAP Markers. [Research]. Journal of Crop Breeding. 2017; 8(20): 51-41.
  18. Sancholi N., Kamalaldini H., Haddadi F., Fazeli-Nasab B. Genetic diversity of some population of Radish (Raphanus sativus) using REMAP marker. Genetics Novin. 2018; 13(2): 313-319.
  19. Behera T.K., Singh A.K., Staub J.E. Comparative analysis of genetic diversity in Indian bitter gourd (Momordica charantia L.) using RAPD and ISSR markers for developing crop improvement strategies. Scientia Horticulturae. 2008; 115(3): 209-217.
  20. Alhariri A., Behera T.K., Jat G.S., Devi M.B., Boopalakrishnan G., Hemeda N.F., Teleb A.A., Ismail E., Elkordy A. Analysis of genetic diversity and population structure in bitter gourd (Momordica charantia L.) using morphological and SSR markers. Plants. 2021; 10(9): 1860.
  21. Cheraghi A., Rahmani F., Hassanzadeh-Ghorttapeh A. IRAP and REMAP based genetic diversity among varieties of Lallemantia iberica. Molecular Biology Research Communications. 2018; 7(3): 125-132.
  22. Bublyk O., Andreev I., Kalendar R., Spiridonova K., Kunakh V. Efficiency of different PCR-based marker systems for assessment of Iris pumila genetic diversity. Biologia. 2013; 68(4): 613-620.
  23. Cui J., Cheng J., Nong D., Peng J., Hu Y., He W., Zhou Q., Dhillon N.P.S., Hu K. Genome-Wide Analysis of Simple Sequence Repeats in Bitter Gourd (Momordica charantia). Frontiers in Plant Science. 2017; 8: 1103.
  24. Nithinkumar K., Kumar J., Varalakshmi B., Sadanand K., Mushrif S., Ramachandra R., Prashanth S. Genetic divergence study in bitter gourd (Momordica charantia L.). Journal of Horticultural Sciences. 2021; 16(2): 193-198.
  25. Mallikarjuna K.N., Tomar B.S., Mangal M., Singh N., Singh D., Kumar S., Tomer A., Singh B., Jat G.S. Genetic Diversity and Population Structure Analyses in Bitter Gourd (Momordica charantia L.) Based on Agro-Morphological and Microsatellite Markers. Plants (Basel). 2023; 12(19).
  26. Cui J., Yang Y., Luo S., Wang L., Huang R., Wen Q., Han X., Miao N., Cheng J., Liu Z., Zhang C., Feng C., Zhu H., Su J., Wan X., Hu F., Niu Y., Zheng X., Yang Y., Shan D., Dong Z., He W., Dhillon N.P.S., Hu K. Whole-genome sequencing provides insights into the genetic diversity and domestication of bitter gourd (Momordica spp.). Horticultural Sciences. 2020; 7(1): 85.
  27. Dellaporta S.L., Wood J., Hicks J.B. A plant DNA minipreparation: version II. Plant Molecular Biology Reporter. 1983; 1(4): 19-21.
  28. Rolf F.J. NTSYS-Pc: Reference Manual. Exeter publishing Ltd. New York. 2002.
  29. Ramallo E., Kalendar R., Schulman A.H., Martínez-Izquierdo J.A. Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Molecular Biology. 2008; 66: 137-150.
  30. Abdollahi Mandoulakani B., Sadigh P., Azizi H., Piri Y., Nasri S., Arzhangh S. Comparative assessment of IRAP, REMAP, ISSR, and SSR markers for evaluation of genetic diversity of alfalfa (Medicago sativa L.). Journal of Agricultural Science and Technology. 2015; 17(4): 999-1010.
  31. Abdollahi Mandoulakani B., Yaniv E., Kalendar R., Raats D., Bariana H.S., Bihamta M.R., Schulman A.H. Development of IRAP- and REMAP-derived SCAR markers for marker-assisted selection of the stripe rust resistance gene Yr15 derived from wild emmer wheat. [Research Support, Non-U.S. Gov't]. Theoretical and Applied Genetics. 2015; 128(2): 211-219.
  32. Antonius-Klemola K., Kalendar R., Schulman A.H. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theoretical and Applied Genetics. 2006; 112: 999-1008.
  33. Griffiths J., Catoni M., Iwasaki M., Paszkowski J. Sequence-independent identification of active LTR retrotransposons in Arabidopsis. Molecular plant. 2018; 11(3): 508-511.
  34. Tabatabaee M., Haddadi F., Kamalaldini H., Fazeli-Nasab B. Evaluation of the Ability of Retrotransposon Markers to Study the Genetic Diversity in some Populations of Radish (Raphanus Sativus). [Research]. Journal of Crop Breeding. 2018; 10(28): 27-37.
  35. Casasoli M., Pot D., Plomion C., Monteverdi M., Barreneche T., Lauteri M., Villani F. Identification of QTLs affecting adaptive traits in Castanea sativa Mill. Plant, Cell & Environment. 2004; 27(9): 1088-1101.
  36. Kalendar R., Schulman A.H. Transposon-based tagging: IRAP, REMAP, and iPBS. [Research Support, Non-U.S. Gov't]. Methods in Molecular Biology. 2014; 1115: 233-255.
  37. Papolu P.K., Ramakrishnan M., Mullasseri S., Kalendar R., Wei Q., Zou L.H., Ahmad Z., Vinod K.K., Yang P., Zhou M. Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress. Frontiers in Plant Science. 2022; 13: 1064847.
  38. Ramakrishnan M., Papolu P.K., Mullasseri S., Zhou M., Sharma A., Ahmad Z., Satheesh V., Kalendar R., Wei Q. The role of LTR retrotransposons in plant genetic engineering: how to control their transposition in the genome. Plant Cell Reports. 2023; 42(1): 3-15.
  39. Behera T.K., Behera S., Bharathi L., John K.J., Simon P.W., Staub J.E. Bitter gourd: botany, horticulture, breeding. Horticultural Reviews, Volume 37. 2010; 37: 101-141.
  40. Jia S., Shen M., Zhang F., Xie J. Recent advances in Momordica charantia: functional components and biological activities. International Journal of Molecular Sciences. 2017; 18(12): 2555.
  41. Chen X., Zou K., Li X., Chen F., Cheng Y., Li S., Tian L., Shang S. Transcriptomic Analysis of the Response of Susceptible and Resistant Bitter Melon (Momordica charantia L.) to Powdery Mildew Infection Revealing Complex Resistance via Multiple Signaling Pathways. International Journal of Molecular Sciences. 2023; 24(18): 14262.