Zataria multiflora Essential oil Prevent Iron Oxide Nanoparticles-induced Liver Toxicity in Rat Model


1 Department of Medicine, Faculty of Medicine, Qom Branch, Islamic Azad University, Qom, Iran

2 Materials and Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran

3 Department of Biochemistry, Faculty of Sciences, Payame Noor University, Tehran, Iran

4 Department of Pathobiology, Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran

5 Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran


Over loading of iron oxide nanoparticles can causes the liver injury through overproduction of free radicals. Zataria multiflora Boiss. (Lamiaceae) has been used for many years in folk medicine due to its antioxidant and antibacterial activities. This study evaluates -for the first time- the effect of Z. multiflora essential oil (EO) against iron oxide nanoparticles hepatotoxicity in rat model. Male Wistar rats were divided randomly into 4 groups; control group (C), non-treated control group (NT), treatment groups, nanoparticles plus Z. multiflora EO at 100 and 200 mg/kg b.w. In following, the liver and blood tissue were collected for estimating antioxidant / oxidative stress parameters including lipid peroxidation (LP), glutathione (GSH), glutathione-S-transferase (GST), and liver enzyme asparate transaminase (AST) and also histopathological examinations. Iron oxide nanoparticles toxicity produced a significant increase in the levels of LP, ferric reducing ability of plasma (FRAP), and AST activity concomitant with decrease in the levels of GSH and GST activity compared to the control group. However, in the treatment groups received Z. multiflora EO, the levels of LP and AST activity reduced together with increasing in GSH content and GST activity were significantly reported. Histopathological studies also supported the biochemical assessments indicating hepatic improvements induced by nanoparticles. Z. multiflora EO protected the liver from injuries induced by iron oxide nanoparticles which can be correlated with its antioxidant activities. This can be a valuable candidate in modulating the oxidative hepatic injuries.


1. Asha VV, Pushpangadan P. Preliminary evaluation of the antihepatotoxic activity of Phyllanthus kozhikodianus, P. maderaspatensis and Solanum indicum. Fitoterapia. 1998;69:255-259.

2. Parivar K, Malekvand Fard F, Bayat M, Alavian SM, Motavaf M. Evaluation of iron oxide nanoparticles toxicity on liver cells of BALB/c rats. Iran Red Crescent Med J. 2016;18:1-5.

3. Yousefi Babadi  V, Najafi L, Najafi A, Gholami H, Beigi Zarji ME, Golzadeh J, Amraie E, Shirband A. Evaluation of iron oxide nanoparticles effects on tissue and enzymes of liver in rats. J Pharm Biomed Sci. 2012;23:1-5.

4. Houglum K, Filip M, Josephl W, Chojkier M. Malondialehyde and 4-hydroxyno nenal protein adducts in plasma and liver of rats with iron overloads. J Clinic Investig Inc. 1990;86:1991-1998.

5. Mayers M, Brent G, Prendergast F, Holman R, Kuntz S, Larusso N. Alterations in the structure, physiochemical properties, and pH of hepatocyte lysosomes in experimental iron overload. J Clin Invest Inc. 1991;88:1207-1215.

6. Peretz G, Link G, Pappo O, Bruck R, Ackerman Z. Effect of hepatic iron concentration reduction on hepatic fibrosis and damage in rats with cholestatic liver disease. World J Gastroenterol. 2006;12:240-245.

7. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P. Exposure to carbon nanotube material, assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A. 2003;66:1909-1926.

8. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, West JL, Colvin  VL. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 2004;4:1881-1887.

9. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett. 2005;155:377-384.

10. Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem. 2004;15:897-900.

11. Kharpate S, Vadnerkar G, Jain D, Jain S. Hepatoprotective activity of the ethanol extract of the leaf of Ptrospermum acerifolium. Indian J Pharm Sci. 2007;69:850-852.

12. Kumar CH, Ramesh A, Kumar JNS, Ishaq BM. A review on hepatoprotective activity of medicinal plants. Int J Pharm Sci Res. 2011;2:501-515.

13. Abu Ghadeer AR, Ali SE, Osman SA, Abu Bedair FA, Abbady MM, El-Kady MR. Antagonistic role of silymarin against cardiotoxicity and impaired antioxidant induced by adriamycin and/or radiation exposure in albino rats. Pakistan J Biol Sci. 2001;4:604-607.

14. Ramadan L, Roushdy HM, Abu Senna GM, Amin NE, El-Deshw OA. Radioprotectve effect of silymarin against radiation induced hepatotoxicity. Pharmacol Res. 2002;45:447-452.

15. Bhuvaneswari R, Chidambaranathan N, Jegatheesan K. Hepatoprotective effect of Embilica officinalis and its silver nanoparticles against CCl4 induced hepatotoxicity in Wistar albino rats. Dig J Nanomater Bios. 2014;9:223-235.

16. Amin G. Popular medicinal plants of Iran. Tehran, Iran: Deputy Minister of Research Publication, Ministry of Health, Treatment, and Medical Education. 1991.

17. Mozaffarian V. A dictionary of Iranian plant names, 2nd end. Farhang Moaser Publication, Tehran. 1998.

18. Hosseinzadeh H, Ramezani M, Salmani G. Antinociceptive, anti-inflammatory and acute toxicity effects of Zataria multiflora Boiss. extracts in mice and rats. J Ethnopharmacol. 2000;73:379-385.

19. Ramezani M, Hosseinzadeh H, Samizadeh S. Antinociceptive effects of Zataria multiflora Boiss. fractions in mice. J Ethnopharmacol. 2005;91:167-170.

20. Fatemi F, Asri Y, Rasooli I, Alipoor SHD, Shaterloo M. Chemical composition and antioxidant properties of γ-irradiated Iranian Zataria multiflora extracts. Pharm Biol. 2012;50:232-238.

21. Fatemi F, Dini S, Dadkhah A, Zolfaghari MR. Considering the antibacterial activity of Zataria multiflora Boiss essential oil treated with gamma-irradiation in vitro and in vivo systems. Radiat Phys and Chem. 2015;106:145-150.

22. Dadkhah A, fatemi F, Mohammadi Malayeri MR, Rasooli A. Cancer chemopreventive effect of dietary Zataria multiflora essential oils. Turk J Biol. 2014c;38:1-10.

23. Boskabady MH, Gholami Mahtaj L. Lung inflammation changes and oxidative stress induced by cigarette smoke exposure in guinea pigs affected by Zataria multiflora and its constituent, carvacrol. BMC Complement Altern Med. 2015;15:39-49.

24. Ezhumalai M, Ashokkumar N, Pugalendi KV. Combination of carvacrol and rosiglitazone high fat diet induced changes in lipids and inflammatory markers in C57BL/6J mice. Biochimie. 2015;110:129‐136.

25. El-Sayed EM, Mansour AM, Abdul-Hameed MS. Thymol and carvacrol prevent doxorubicin-induced cardiotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats. J Biochem Mol Toxicol. 2016;30:37-44.

26. Amin M, Kalantar E, Mohammad-Saeid N, Ahsan B. Antibacterial effect and physicochemical properties of essential oil of Zataria multiflora Boiss. Asian Pac J Trop Med. 2010;3:439-442.

27. Malekinejad H, Bazargani-Gilani B, Tukmechi A, Ebrahimi H. A cytotoxicity and comparative antibacterial study on the effect of Zataria multiflora Boiss, Trachyspermum copticum essential oils, and Enrofloxacin on Aeromonas hydrophila. Avicenna J Phytomed. 2012;2:188-195.

28. Raeisi M, Tajik H, Razavi Rohani SM, Tepe B, Kiani H, Khoshbakht R, Shirzad Aski SA, Tadrisi H. Inhibitory effect of Zataria multiflora Boiss. essential oil, alone and in combination with monolaurin, on Listeria monocytogenes. Vet Res Forum. 2016;7:7-11.

29. Mahboubi A, Kamalinejad M, Abdul Majid Ayatollahi AM, Babaeian M. Total phenolic content and antibacterial activity of five plants of labiatae against four foodborne and some other bacteria. Iran J Pharm Res. 2014;13:559-566.

30. Saei-Dehkordi SS, Tajik H, Moradi M, Khalighi-Sigaroodi F. Chemical composition of essential oils in Zataria multiflora Boiss. from different parts of Iran and their radical scavenging and antimicrobial activity. Food Chem Toxicol. 2010;48:1562-1567.

31. Amanlou M, Beitollahi JM, Abdollahzadeh S, Tohidast-Ekrad Z. Miconazole gel compared with Zataria multiflora Boiss. gel in the treatment of denture stomatitis. Phytother. Res. 2006;20:966-969.

32. Sajed H, Sahebkar A, Iranshahi M. Zataria multiflora Boiss. (Shirazi thyme) an ancient condiment with modern pharmaceutical uses. J Ethnopharmacol. 2013;145:686-98.

33. Hosseinimehr SJ, Mahmoudzadeh A, Ahmadi A, Ashrafi SA, Shafaghati N, Hedayati N. The radioprotective effect of Zataria multiflora against genotoxicity induced by γ irradiation in human blood lymphocytes. Cancer Biother Radiopharm. 2011;26:325-329.

34. Gandomi H, Misaghi A, Basti AA, Bokaei S, Khosravi A, Abbasifar A, Jebelli Javan A. Effect of Zataria multiflora Boiss. essential oil on growth and aflatoxin formation by Aspergillus flavus in culture media and cheese. Food Chem Toxicol. 2009;47:2397-2400.

35. Alizadeh NS, Khoei EM, Fazelimanesh M, Astaneh A. Antibacterial effects of Zataria multiflora Boiss. (Shirazi Avishan extract) on urinary tract Escherichia coli infections. Res J Biol Sci. 2009;4:891-4.

36. Sharififar F, Moshafi MH, Mansouri SH, Khodashenas M. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Control. 2007;18:800-805.

37. Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;25:7130-7139.

38. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.

39. Seldak J, Lindsay RH. Estimation of total protein bound and non-protein sulfidryl groups in tissue with Elman’s reagent. Anal Biochem. 1968;25:192-205.

40. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem. 1996;239:70-76.

41. Lillie RD. Histopathologic technic and practical histochemistry, 3rd ed. New York, McGraw-Hill Book Co. 1965.

42. Aillon KL, Xie YM, El-Gendy N, Berkland CJ, Forrest ML. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev. 2009;61:457-466.

43. Singh RP, Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles.  Toxicol Lett. 2012;213:249-259.

44. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;2:17-71.

45. Nel A, Xia T, Madler L, Lin N. Toxic potential of materials at the nano level. Science. 2006;311:622-627.

46. Asharani PV, Mun GK, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells.  ACS Nano. 2009;3:279-290.

47. Srinivasan R, Chandrasekar MJN, Nanjan MJ, Suresh B. Antioxidant activity of Caesalpiniadigyna Root. J Ethnopharmacol. 2007;113:284-291. 

48. Gao M, Li Y, Yang J. Protective effect of Pedicularis decora Franch root extracts on oxidative stress and hepatic injury in alloxan-induced diabetic mice. J Med Plants Res. 2011;5:5848-5856.

49. Ahmad A, Rasheed N, Banu N, Palit G. Alterations in monoamine levels and oxidative systems in frontal cortexcortex, striatum, and hippocampus of the rat brain during chronic unpredictable stress. Stress. 2010;13:356-365.

50. Wan R, Mo Y, Feng L, Chien S, Tollerud DJ, Zhang Q. DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. Chem Res Toxicol. 2012;25:1402-1411.

51. Handy RD, Shaw BJ. Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology. Health  Risk Soc. 2007;9:125-144.

52. Shirband A, Azizian H, Pourentezari M, Rezvani ME, Anvari M, Esmaeilidehaj M. Dose-dependent effects of iron oxide nanoparticles on thyroid hormone concentrations in liver enzymes: possible tissue destruction. GJMR. 2014;1:28-31.

53. Jensen PD, Jensen FT, Christensen T, Nielsen JL, Ellegaard J. Relationship between hepatocellular injury and transfusional iron overload prior to and during iron chelation with desferrioxamine: a study in adult patients with acquired anemias. Blood. 2003;101:91-96.

54. Bhattacharya A, Ramanathan M, Ghosal S, Bhattacharya SK. Effect of Withania samra glycoeithanolides on iron-induced hepatotoxicity in rats. Phytother Res. 2000;14:568-570.

55. Whittaker P, Hines FA, Robl MG, Dunkel VC. Histopathological evaluation of liver, pancreas, spleen, and heart from iron overloaded Sprague-Dawley rats. Toxicol Pathol. 1996;24:558-563.

56. Zhao Y, Li H, Gao Z, Xu H. Effects of dietary baicalin supplementation on iron overload-induced mouse liver oxidative injury. Europ J Pharmacol. 2005;509:195-200.

57. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794-1807.

58. Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat1 AI. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect. 2007;115:403-409.

59. Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Stolzle S, Fertig N, Parak WJ. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 2005;5:331-338.

60. Gamal El-din AM, Mostafa AM, Al-Shabanah OA, Al-Bekairi AM, Nagi MN. Protective effect of arabic gum against acetaminophen-induced hepatotoxicity in mice. Pharmacol Res. 2003;48:631-635.

61. De S, Ravishankar B, Bhavsar GC. Plants with hepatoprotective activity: A review. Ind Drugs. 1993;30:355-363.

62. Khopde SM, Indira Priyadarsini K, Mohan h, Gawandi VB, Satav JG, Yakhmi JV, Banavaliker MM, Biyani MK, Mittal JP. Characterizing the antioxidant activity of amla (Phyllanthus emblica) extract. Curr Sci. 2001;81:185-190.

63. Dadkhah  A, Fatemi F, Ababzadeh S, Roshanaei K, Alipour M, Sadegh Tabrizi B. Preventive role of Iranian Achillea wilhelmsii C. Koch essential oils in acetaminophen ninduced hepatotoxicity. Bot Stud. 2014a;55:37-47.

64. Dadkhah A, Fatemi F, Eslami Farsani M, Roshanaei K, Alipour M, Aligolzadeh H. Hepatoprotective effects of Iranian Hypericum scabrum essential oils against oxidative stress induced by acetaminophen in rats. Braz Arch Biol Technol. 2014b;57:340-348.

65. Dadkhah A, Fatemi F, Alipour M, Fatourehchi S, Sadat Parchini F. Regulatory effect of Iranian Hypericum Scabrum essential oils on hepatic metabolizing enzymes in rats treated by acetaminophen. J Essent Oil Bear Pl. 2015a;18:335-348.

66. Dadkhah A, Fatemi F, Alipour M, Ghaderi Z, Zolfaghari F, Razdan F. Protective effects of Iranian Achillea wilhelmsii essential oil on acetaminophen induced oxidative stress in rat liver. Pharm Biol. 2015b;53:220-7.

67. Fatemi F, Allameh A, Khalafi H, Ashrafihelan J. Hepatoprotective effects of γ-irradiated caraway essential oils in experimental sepsis. Appl Radiat Isot. 2010;68:280-285.

68. Mahboubi M, Bidgoli FG. Antistaphylococcal activity of Zataria multiflora essential oil and its synergy with vancomycin. Phytomedicine. 2010;17:548-550.

69. Majlessi N, Choopani S, Kamalinejad M, Azizi Z. Thymol as a main constituent   of zataria multiflora boiss: essential oil attenuates amyloid β-induced cognitive deficits in a rat model of Alzheimer's disease. Alzheimers Dementia. 2011;7:770.

70. Moosavy MH, Akhondzadeh-Basti A, Misaghi A, Zahraei-Salehi T, Abbasifar R, Ebrahimzadeh H, Mousavi HA, Alipour M, Emami Razavi N, Gandomi H, Noori N. Effect of Zataria multiflora Boiss. essential oil and nisin on Salmonella typhimurium and Staphylococcus aureus in a food model system and on the bacterial cell membranes. Food Res Int. 2008;41:1050-1057.

71. Di Pasqua R, Hoskins N, Betts G, Mauriello G. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J Agric Food Chem. 2006;54:2745-9.

72. Grespan R, Aguiar RP, Giubilei FN, Fuso RR, Damiao MJ, Silva EL, Graton-Mirkcha J, Hernadez L, Bersani-Amado CA, Cuman RKN. Hepatoprotective effect of pretreatment with Thymus vulgaris essential oil in experimental model of acetaminophen-induced injury. Evidence-Based Comp and Alt Med. 2014;1-8.

73. Pinho RJD, Rafael Pazinatto Aguiar RP, Ricardo Alexandre Spironello RA, Francielli Mariade Souza Silva-Comar FMDSS, Saulo Euclides Silva-Filho SE, Eurica Mary Nogami EM, Ciomar Aparecida Bersani-Amado CA, Roberto Kenji Nakamura Cuman KNC. Hepatoprotective effect of pretreatment with rosemary and ginger essential oil in experimental model of acetaminophen-induced injury.  BJPR. 2014;4:2126-2135.

74. Eidi A, Eidi M, Al-Ebrahim M, Rohani AH, Mortazavi P. Protective effects of sodium molybdate on carbon tetrachloride-induced hepatotoxicity in rats. J Trace Elem Med Biol. 2011;25:67-71.