Effect of Solvent Type on Rosmarinic Acid, Total Phenol, Flavonoids, and Antioxidant Activity of Nepeta asterotricha Rech. f: An Endemic Plant from Iran

Document Type : Research Paper

Authors

1 Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran

2 Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran

3 Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, (Mahan Golsay Company, Yazd) Iran

Abstract

The current study aims to investigate the effect of solvent variety on some phytochemical factors of Nepeta asterotricha Rech. f.: as an endemic plant from Iran. It is suspected that quantity and quality of chemical compounds would be affected by solvent type. For this purpose, aqueous, hydro-alcohol (50/50 ethanol/water), and methanol were used as solvents. The studied factors were total phenol, flavonoid, antioxidant activity, and rosmarinic acid that were measured by Folin-Ciocalteu, colorimetric, FRAP, and HPLC methods, respectively. The outcomes showed hydro-alcohol extraction could significantly isolate phenol compounds (156.84 mg GAE/g DW) with considerable antioxidant properties (318.55 mg AA/g DW). However, methanol was more effective to extract total flavonoid content (101.34 mg RE/g DW) and rosmarinic acid (140.39% DW). In addition, more study should be done to investigate the importance of each compounds for both medicinal and industrial uses.

Keywords


1. Jamzad Z. A survey of Lamiaceae in the flora of Iran. Rostaniha. 2013;14:59-67.
2. Mozaffarian V. Identification of medicinal and aromatic plants of Iran, Farhang Moaser. 2013.
3. Amin G. Popular medicinal plants of Iran, Iranian Ministry of Health Publications. 1991.
4. Zargari A. Medicinal plants (4th ed), Tehran University. 1995.
5. Duda S.C, Mărghitaş L.A, Dezmirean D, Duda M, Mărgăoan R, Bobiş O. Changes in major bioactive compounds with antioxidant activity of Agastache foeniculum, Lavandula angustifolia, Melissa officinalis and Nepeta cataria: Effect of harvest time and plant species. Ind Crops Prod. 2015;77:499-507.
6. Sarikurkcu C, Ceylan O, Targan S, Ćavar Zeljković S. Chemical composition and biological activities of the essential oils of two endemic Nepeta species. Ind Crops Prod. 2018;125:5-8.
7. Skorić M, Gligorijević N, Čavić M, Todorović S, Janković R, Ristić M, Radulović S. Cytotoxic activity of Nepeta rtanjensis Diklić & amp; Milojević essential oil and its mode of action. Ind Crops Prod. 2017;100:163-170.
8. Kumar V, Mathela C.S, Tewari G, Singh D. Antifungal activity of Nepeta elliptica Royle ex Benth. oil and its major constituent (7R)-trans,trans-nepetalactone: A comparative study. Ind Crops Prod. 2014;55:70-74.
9. Goldansaz S.M, Festa C, Pagano E, De Marino S, Finamore C, Parisi O.A, Borrelli F, Sonboli A, D’Auria M.V. Phytochemical and biological studies of Nepeta asterotricha rech. f. (Lamiaceae): Isolation of Nepetamoside. Molecules. 2019;24:1684.
10. Mosleh Arani A, Naderi M, Goldansaz S.M. Effect of harvesting time on essential oil content and composition of Thymbra spicata. J of Med Plants and By-Prod. 2015;1:51-55.
11. Dib I, Angenot L, Mihamou A, Ziyyat A, Tits M. Artemisia campestris L.: Ethnomedicinal, phytochemical and pharmacological review. J. Herb. Med. 2017;7:1-10.
12. Goldansaz S.M, Hakimi Meybodi M, Mirhosseini A, Mirjalili M. Essential oil composition of Salvia tebesana Bunge (Lamiaceae) from Iran. Rec Nat Prod. 2017;11:310-314.
13. Amiri A, Morakabati N. Encapsulation of Satureja khuzestanica Essential Oil in Chitosan Nanoparticles with Enhanced Antifungal Activity. Int J Food Sci Nutr. 2017;11:331-336.
14. Lemus-Mondaca R, Vega-Gálvez A, Rojas P, Stucken K, Delporte C, Valenzuela-Barra G, Pasten A. Antioxidant, antimicrobial and anti-inflammatory potential of Stevia rebaudiana leaves: effect of different drying methods. J Appl Res Med Aromat Plants. 2018;11:37-46.
15. Singh D, Chaudhuri P.K. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind Crops Prod. 2018;118:367-382.
16. de Oliveira-Júnior R.G, Ferraz C.A, de Oliveira A.P, Araújo C.S, Oliveira L.F, da S, Picot L, Almeida, J.R.G, da S. Phytochemical and pharmacological aspects of Cnidoscolus pohl species: A systematic review. Phytomedicine. 2018;50:137-147.
17. Goldansaz S.M, Jafarian Jeloudar Z, Safaeian R, Sonboli A. Comparison of the chemical constitutions, antibacterial, anti-Candida, and antioxidant activity of Nepeta asterotricha Rech. F. essential oil. American Journal of Essential Oils and Natural Products. 2019;7:15-22.
18. Alara O.R, Abdurahman N.H, Ukaegbu C.I. Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. J Appl Res Med Aromat Plants. 2018;11:12-17.
19. Bampouli A, Kyriakopoulou K, Papaefstathiou G, Louli V, Krokida M, Magoulas K. Comparison of different extraction methods of Pistacia lentiscus var. chia leaves: Yield, antioxidant activity and essential oil chemical composition. J Appl Res Med Aromat Plants. 2014;1:81-91.
20. Amiri A, Mousakhani-Ganjeh A, Amiri Z, Guo Y, Singh A.P, Esmaeilzadeh Kenari R. Fabrication of cumin loaded-chitosan particles: Characterized by molecular, morphological, thermal, antioxidant and anticancer properties as well as its utilization in food system. Food Chem. 2020;310:125821.  
21. Oreopoulou A, Papavassilopoulou E, Bardouki H, Vamvakias M, Bimpilas A, Oreopoulou V. Antioxidant recovery from hydrodistillation residues of selected Lamiaceae species by alkaline extraction. J Appl Res Med Aromat Plants. 2018;8:83-89.
22. Javanmardi J, Stushnoff C, Locke E, Vivanco J. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem. 2003;83:547-550.
23. Dorta E, Lobo M.G, Gonzalez M. Reutilization of Mango byproducts: study of the effect of extraction solvent and temperature on their antioxidant properties. J Food Sci. 2012;77:80-88.
24. Bhebhe M, Füller T.N, Chipurura B, Muchuweti M. Effect of solvent type on total phenolic content and free radical scavenging activity of black tea and herbal infusions. Food Anal Methods. 2016;9:1060-1067.
25. Figueroa-Espinoza M.C, Zafimahova A, Alvarado P.G.M, Dubreucq E, Poncet-Legrand C. Grape seed and apple tannins: Emulsifying and antioxidant properties. Food Chem. 2015;178:38-44.
26. Hwang E.S, Thi. Effects of extraction and processing methods on antioxidant compound contents and radical scavenging activities of Laver (Porphyra tenera). Prev Nutr Food Sci. 2014;19:40-48.
27. Elfalleh W, Kirkan B, Sarikurkcu C. Antioxidant potential and phenolic composition of extracts from Stachys tmolea: An endemic plant from Turkey. Ind Crops Prod. 2019;127:212-216.
28. Burkhardt A, Sintim H.Y, Gawde A, Cantrell C.L, Astatkie T, Zheljazkov V.D, Schlegel V. Method for attaining fennel (Foeniculum vulgare Mill.) seed oil fractions with different composition and antioxidant capacity. J Appl Res Med Aromat Plants. 2015;2:87-91.
29. Dincer C, Torun M, Tontul I, Topuz A, Sahin-Nadeem H, Gokturk R.S, Ozdemir F. Phenolic composition and antioxidant activity of Sideritis lycia and Sideritis libanotica subsp. linearis: Effects of cultivation, year and storage. J Appl Res Med Aromat Plants. 2017;5:26-32.
30. Rigane G, Ghazghazi H, Aouadhi C, Ben Salem R, Nasr Z. Phenolic content, antioxidant capacity and antimicrobial activity of leaf extracts from Pistacia atlantica. NAT PROD RES. 2017;31:696-699.
31. Lu Y, Yeap Foo L. Polyphenolics of Salvia-a review. Phytochemistry. 2002;59:117-140.
32. Petersen M, Simmonds M.S. Rosmarinic acid. Phytochemistry. 2003;62:121-125.
33. Renzulli C, Galvano F, Pierdomenico L, Speroni E, Guerra M.C. Effects of rosmarinic acid against aflatoxin B1 and ochratoxin-A-induced cell damage in a human hepatoma cell line (Hep G2). J Appl Toxicol. 2004;24:289-296.
34. Falé P.L, Borges C, Madeira P.J.A, Ascensão L, Araújo M.E.M, Florêncio M.H, Serralheiro M.L. M. Rosmarinic acid,
93
scutellarein 4′-methyl ether 7-O-glucuronide and (16S)-coleon E are the main compounds responsible for the antiacetylcholinesterase and antioxidant activity in herbal tea of Plectranthus barbatus (“falso boldo”). Food Chem. 2009;114:798-805.
35. Fallarini S, Miglio G, Paoletti T, Minassi A, Amoruso A, Bardelli C, Lombardi G. Clovamide and rosmarinic acid induce neuroprotective effects in in vitro models of neuronal death. Br J Pharmacol. 2009;157:1072-1084.
36. Osakabe N, Yasuda A, Natsume M, Yoshikawa T. Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model. Carcinogenesis. 2003;25:549-557.
37. Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob. Agents Chemother. 2007;51:3367-3370.