Semi-industrial Production of Lovastatin with a Standard Amount of Mycotoxin Citrinin from Monascus purpureus

Document Type : Research Paper

Authors

Department of Horticultural Science and Landscape, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran

Abstract

Lovastatin is a statin used to treat hypercholesterolemia and cardiovascular diseases (CVDs). It is produced by several medicinal non-pathogenic fungi, including Monascus purpureus (MP). While CVDs account for a high percentage of deaths in Iran, few studies have investigated lovastatin production in the country. This study aimed to examine the semi-industrial production of lovastatin from MP by controlling the amount of mycotoxin citrinin. Eleven treatments containing varying levels of several sources of carbon, nitrogen, and several physical factors of the fungus culture medium were tested simultaneously using a Plackett–Burman screening design. Building on Pareto chart, the Plackett–Burman test determined the contribution of each factor to the production of lovastatin and mycotoxin citrinin. As a carbon source, higher barley concentration increased lovastatin production. Lovastatin production required an increased aeration rate with a further rise in barley content. The maximum production of lovastatin (318 mg/L) and lower content of mycotoxin citrinin (48 ppb) occurred under optimized conditions (20 g/L of barley and 8 L/min of aeration). Barley and aeration rates contributed significantly to higher lovastatin and lower mycotoxin citrinin production. These findings can be used in the semi-industrial production of lovastatin with low levels of mycotoxin citrinin (less than the allowable limit).

Keywords


  1. Vasan R.S., Sullivan L.M., Wilson P.W., Sempos C.T., Sundström J., Kannel W.B., et al. Relative importance of borderline and elevated levels of coronary heart disease risk factors. Annals of Internal Medicine. 2005;142(6):393-402.
  2. Sharma V. To assess sudden deaths due to atherosclerosis in adult population: An autopsy study.
  3. Kalaivani M., Rajasekaran A. Improvement of monacolin K/citrinin production ratio in Monascus purpureus using UV mutagenesis. Nutrafoods. 2014;13(2):79-84.
  4. Zhen Z., Xiong X., Liu Y., Zhang J., Wang S., Li L., et al. NaCl inhibits citrinin and stimulates Monascus pigments and monacolin K production. Toxins. 2019;11(2):118.
  5. Subhan M., Faryal R., Macreadie I. Production of statins by fungal fermentation. Microbio Australia. 2017;38(2):70-2.
  6. Silveira ST, Daroit DJ, Brandelli A. Pigment production by Monascus purpureus in grape waste using factorial design. LWT-Food Sci.Tech. 2008;41(1):170-4.
  7. Montgomery D.C. Design and analysis of experiments: John wiley & sons; 2017.
  8. Mansoori S, Yazdian F, Azizi M, Sheikhpour M, Amoabediny G., Hamedi J., et al. Optimization of monacolin production in a controlled system. Applied Food Biotech. 2015;2(4):21-6.
  9. Baneshi F., Azizi M., Saberi M., Farsi M. Gibberellic acid, amino acids (glycine and L-leucine), vitamin B2 and zinc as factors affecting the production pigments by Monascus purpureus in a liquid culture using response surface methodology. African J Biotech. 2014;13(13).
  10. Baneshi F., Azizi M., Saberi M., Farsi M. Evaluation of pH, carbon source and temperature effect on the pigments production by Monascus purpureus in a liquid culture using response surface methodology. International J Current Microbio. Applied Sci. 2014;3.
  11. Mansoory S., Yazdian F., Hatamian A., Azizi M. Comparison of Filamentous Fungus Growth In Submerged and Solid State Culture.
  12. Wang J-J, Lee C-L, Pan T-M. Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture. J Agric. Food Chem. 2004;52(23):6977-82.
  13. Sayyad S.A., Panda B.P., Javed S., Ali M. Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Applied Microbio Biotech. 2007;73(5):1054-8.
  14. Aminifard M, Aroiee H, Nemati H, Azizi M, Khayyat M. Effect of nitrogen fertilizer on vegetative and reproductive growth of pepper plants under field conditions. Journal of plant nutrition. 2012;35(2):235-42.
  15. Heidari S., Azizi M., Soltani F., Hadian J. Foliar application of Ca (NO3) 2 and KNO3 affects growth, essential oil content, and oil composition of French tarragon. Industrial Crops and Products. 2014;62:526-32.
  16. Pfohl-Leszkowicz A, Petkova-Bocharova T, Chernozemsky I., Castegnaro M. Balkan endemic nephropathy and associated urinary tract tumours: a review on aetiological causes and the potential role of mycotoxins. Food Additives Contaminants. 2002;19(3):282-302.
  17. Srianta I., Ristiarini S., Nugerahani I., Sen S., Zhang B., Xu G., et al. Recent research and development of Monascus fermentation products. Int Food Res J. 2014;21(1).
  18. Bhatty R. Production of food malt from hull-less barley. Cereal Chem. 1996;73(1):75-80.
  19. Agu R. Some relationships between malted barleys of different nitrogen levels and the wort properties. J the Institute of Brewing. 2003;109(2):106-9.
  20. Carvalho JC, Pandey A, Babitha S, Soccol CR. Production of Monascus biopigments: an overview. Agro Food Industry Hi Tech. 2003;14(6):37-43.
  21. Marič A., Skočaj M., Likar M., Sepčić K., Cigić I.K., Grundner M., et al. Comparison of lovastatin, citrinin and pigment production of different Monascus purpureus strains grown on rice and millet. J Food Sci. Tech. 2019;56(7):3364-73.
  22. Lee C-L, Hung H-K, Wang J-J, Pan T-M. Improving the ratio of monacolin K to citrinin production of Monascus purpureus NTU 568 under dioscorea medium through the mediation of pH value and ethanol addition. J Agricultural and Food Chem. 2007;55(16):6493-502.
  23. Jirasatid S., Nopharatana M., Kitsubun P., Vichitsoonthonkul T., Tongta A. Statistical optimization for monacolin K and yellow pigment production and citrinin reduction by Monascus purpureus in solid-state fermentation. J Microbio. Biotech. 2013;23(3):364-74.
  24. Zhou Z., Guo H., Xie C. Effects of culture conditions on production of red pigment and citrinin by fermentation of Monascus ruber. Chemical Engin Transaction. 2015;46:1363-8.
  25. Huawei Z., Chengtao W., Jie Q., Bingjing Z., Bing Z, Chuangyun D. Determining a suitable carbon source for the production of intracellular pigments from Monascus purpureus HBSD 08. Pigment Resin Tech. 2019.
  26. Patrovsky M., Sinovska K., Branska B., Patakova P. Effect of initial pH, different nitrogen sources, and cultivation time on the production of yellow or orange Monascus purpureus pigments and the mycotoxin citrinin. Food Sci. Nutrition. 2019;7(11):3494-500.
  27. Domsch KH., Gams W., Anderson TH. Compendium of soil fungi: Academic Press; 1980.
  28. Darwesh OM, Matter IA, Almoallim HS, Alharbi SA, Oh Y-K. Isolation and Optimization of Monascus ruber OMNRC45 for Red Pigment Production and Evaluation of the Pigment as a Food Colorant. Applied Sci. 2020;10(24):8867.
  29. Saithong P, Chitisankul WT, Nitipan S. Comparative study of red yeast rice with high monacolin K, low citrinin concentration and pigments in white rice and brown rice. Czech J Food Sci. 2019;37(1):75-80.
  30. Chen Y-L, Huang T-K, Chen M-H, Chen K-P, Hsu H-Y., Chan H-Y, et al., editors. Effect of pH, agitation and aeration on yellow pigments and citrinin production by a mutant of Monascus purpureus in fermentors. The Annual Meeting and Exhibition. 2009.
  31. Hajjaj H., Blanc P, Groussac E, Uribelarrea J-L, Goma G, Loubiere P. Kinetic analysis of red pigment and citrinin production by Monascus ruber as a function of organic acid accumulation. Enzyme Mmicrobial Tech. 2000;27(8):619-25.
  32. Yang J., Chen Q., Wang W., Hu J, Hu C. Effect of oxygen supply on Monascus pigments and citrinin production in submerged fermentation. J Bioscience Bioengineering. 2015;119(5):564-9.
  33. Omidi M., Malakoutian M., Choolaei M, Oroojalian F., Haghiralsadat F, Yazdian F. A Label-Free detection of biomolecules using micromechanical biosensors. Chinese Physics Letters. 2013;30(6):068701.
  34. Jia XQ., Xu Z.N., Zhou L.P., Sung CK. Elimination of the mycotoxin citrinin production in the industrial important strain Monascus purpureus SM001. Metabolic Engin. 2010;12(1):1-7.
  35. Shimizu T., Kinoshita H., Nihira T. Identification and in vivo functional analysis by gene disruption of ctnA, an activator gene involved in citrinin biosynthesis in Monascus purpureus. Applied Environ Microbio. 2007;73(16):5097-103.
  36. Ning Z-Q., Cui H., Xu Y., Huang Z-B., Tu Z., Li Y-P. Deleting the citrinin biosynthesis-related gene, ctnE, to greatly reduce citrinin production in Monascus aurantiacus Li AS3. 4384. Int J Food Microbiology. 2017;241:325-30.