Characterization of a Bioactive Triterpenoid from the Toothache Plant, Acmella oleracea, and Identification as an Anthelmintic Compound

Document Type : Research Paper

Authors

1 DBT-BUILDER National Laboratory, Department of Life Sciences, Pachhunga University College, Aizawl, India

2 Department of Biochemistry, Government Zirtiri Residential Science College, Durtlang, India

3 Department of Chemistry, National Institute of Technology Silchar, Assam, India

Abstract

Helminthiasis is a leading parasitic infection in animals and humans that causes a persistent global crisis, aggravated by pervasive drug resistance in the most harmful species. Acmella oleracea (L.) R.K. Jansen is a valuable traditional medicinal plant for treating helminthiasis. The study aimed to identify the chemical compound responsible for the anthelmintic property. A. oleracea extract was prepared with hexane and fractionated in column chromatography by a series of elution with hexane and ethyl acetate. The isolated compound was characterized with elemental analyzer, mass spectrometry, Fourier-transform nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry. The anthelmintic activity was tested against an intestinal tapeworm of chicken and the effects were studied using scanning electron microscopy. Chemical analyses indicated that the compound was a pentacyclic triterpene showing the structure of lup-20(29)-en-3-ol. This is the first identification of the compound from A. oleracea. The anthelmintic activity was compared with that of albendazole and showed a potent efficacy against a poultry tapeworm. Scanning electron microscopy revealed signature anthelmintic damages throughout the body surface of the tapeworm including destruction of the tegument, degeneration of the suckers and removal of the spines. Our findings show that the isolated compound is the anthelmintic principle of A. oleracea as used in the Mizo traditional medicine. Further studies on the exact mechanism of action, cellular effects and pharmacological properties are required for anthelmintic development.

Keywords

Main Subjects


  1. Neto A.F., Di Christine Oliveira Y.L., De Oliveira L.M., La Corte R., Jain S., de Lyra Junior D.P., Fujiwara R.T., Dolabella S.S. Why are we still a worm world in the 2020s? An overview of risk factors and endemicity for soil-transmitted helminthiasis. Acta Parasitologica. 2023;68(3):481−495.
  2. Nixon S.A., Welz C., Woods D.J., Costa-Junior L., Zamanian M., Martin R.J. Where are all the anthelmintics? Challenges and opportunities on the path to new anthelmintics. International Journal for Parasitology: Drugs and Drug Resistance. 2020;14:8−16.
  3. Idris O.A., Wintola O.A., Afolayan A.J. Helminthiases; prevalence, transmission, host-parasite interactions, resistance to common synthetic drugs and treatment. Heliyon. 2019;5(1):e01161.
  4. Fissiha W., Kinde M.Z. Anthelmintic resistance and its mechanism: A review. Infection and Drug Resistance. 2021;15:5403−5410.
  5. Maizels R.M. Identifying novel candidates and configurations for human helminth vaccines. Expert Review of Vaccines. 2021;20:1389−1393.
  6. Brown T.L., Airs P.M., Porter S., Caplat P., Morgan E.R. Understanding the role of wild ruminants in anthelmintic resistance in livestock. Biology Letters. 2022;18(5):20220057.
  7. Ahuir-Baraja A.E., Cibot F., Llobat L., Garijo M.M. Anthelmintic resistance: Is a solution possible? Experimental Parasitology. 2021;230:108169.
  8. Abeysiri G.R., Dharmadasa R.M., Abeysinghe D.C., Samarasinghe K. Screening of phytochemical, physico-chemical and bioactivity of different parts of Acmella oleraceae Murr. (Asteraceae), a natural remedy for toothache. Industrial Crops and Products. 2013;50:852−856.
  9. Dubey S., Maity S., Singh M., Saraf S.A., Saha S. Phytochemistry, pharmacology and toxicology of Spilanthes acmella: A review. Advances in Pharmacological and Pharmaceutical Sciences. 2013;2013:423750.
  10. Neamsuvan O., Ruangrit T. A survey of herbal weeds that are used to treat gastrointestinal disorders from southern Thailand: Krabi and Songkhla provinces. Journal of Ethnopharmacology. 2017;196:84−93.
  11. Uthpala T.G., Navaratne S.B. Acmella oleracea plant; identification, applications and use as an emerging food source – Review. Food Reviews International. 2021;37(4):399−414.
  12. Sharma R., Karunambigai A., Gupta S., Arumugam N. Evaluation of biologically active secondary metabolites isolated from the toothache plant Acmella ciliata (Asteraceae). Advances in Traditional Medicine. 2022;22(4):713−722.
  13. Lalthanpuii P.B., Lalchhandama K. Intestinal cestodes of chicken are effectively killed by quinoline-rich extract of Spilanthes acmella. Veterinary World. 2020;13(4):821−826.
  14. Rai P.K., Lalramnghinglova H. Ethnomedicinal plants of India with special reference to an Indo-Burma hotspot region: An overview. Ethnobotany Research and Applications. 2011;9:379−420.
  15. Lalthanpuii P.B., Lalruatfela B., Vanlaldinpuia K., Lalremsanga H.T., Lalchhandama K. Antioxidant and cytotoxic properties of Acmella oleracea. Medicinal Plants. 2018;10(4):353−358.
  16. Lalthanpuii P.B., Sailo N., Lalruatfela B., Lalremsanga H.T., Lalchhandama K. Some phytochemical, antimicrobial and anticancer tests for an aqueous extract of Acmella oleracea. Research Journal of Pharmacy and Technology. 2019;12(6):3033−3037.
  17. Lalthanpuii P.B., Zokimi Z., Lalchhandama K. The toothache plant (Acmella oleracea) exhibits anthelmintic activity on both parasitic tapeworms and roundworms. Pharmacognosy Magazine. 2020;16(68):193−198.
  18. Lalchhandama K. In vitro effects of albendazole on Raillietina echinobothrida, the cestode of chicken, Gallus domesticus. Journal of Young Pharmacists. 2010;2(4):374−378.
  19. Lalthanpuii P.B., Lalchhandama K. Scanning electron microscopic study of the anthelmintic effects of some anthelmintic drugs on poultry nematode, Ascaridia galli. Advances in Animal and Veterinary Sciences. 2020;8(8):788−793.
  20. Savant P.B., Kareppa M.S. A systematic and scientific review on the Acmella oleracea and its traditional medical and pharmacological uses. Asian Journal of Pharmaceutical Research. 2022;12(1):71−75.
  21. Sharma R., Arumugam N. N-alkylamides of Spilanthes (syn: Acmella): Structure, purification, characterization, biological activities and applications – A review. Future Foods. 2021;3:100022.
  22. Moura J.D., Gemaque E.D., Bahule C.E., Martins L.H., Chisté R.C., Lopes A.S. Bioactive compounds of Jambu (Acmella oleracea (L.) RK Jansen) as potential components of biodegradable food packing: A review. Sustainability. 2023;15(21):15231.
  23. Elufioye T.O., Habtemariam S., Adejare A. Chemistry and pharmacology of alkylamides from natural origin. Revista Brasileira de Farmacognosia. 2020;30:622−640.
  24. Rondanelli M., Fossari F., Vecchio V., Braschi V., Riva A., Allegrini P., Petrangolini G., Iannello G., Faliva M.A., Peroni G., Nichetti M. Acmella oleracea for pain management. Fitoterapia. 2020;140:104419.
  25. Barbosa A.F., de Carvalho M.G., Smith R.E., Sabaa-Srur A.U. Spilanthol: occurrence, extraction, chemistry and biological activities. Revista Brasileira de Farmacognosia. 2016;26:128−233.
  26. Lalthanpuii P.B., Lalchhandama K. Chemical composition and broad-spectrum anthelmintic activity of a cultivar of toothache plant, Acmella oleracea, from Mizoram, India. Pharmaceutical Biology. 2020;58(1):393−399.
  27. Lalthanpuii P.B., Zokimi Z., Lalchhandama K. Anthelmintic activity of praziquantel and Spilanthes acmella extract on an intestinal cestode parasite. Acta Pharmaceutica. 2020;70(4):551−560.
  28. Chaturvedi P.K., Bhui K., Shukla Y. Lupeol: Connotations for chemoprevention. Cancer Letters. 2008;263(1):1−3.
  29. Saleem M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Letters. 2009;285:109−115.
  30. Liu K., Zhang X., Xie L., Deng M., Chen H., Song J., Long J., Li X., Luo J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacological Research. 2021;164:105373.
  31. Siddique H.R., Saleem M. Beneficial health effects of lupeol triterpene: A review of preclinical studies. Life Sciences. 2011;88(7-8):285−293.
  32. Sohag A.A., Hossain M.T., Rahaman M.A., Rahman P., Hasan M.S., Das R.C., Khan M.K., Sikder M.H., Alam M., Uddin M.J., Rahman M.H. Molecular pharmacology and therapeutic advances of the pentacyclic triterpene lupeol. Phytomedicine. 2022;99:154012.
  33. Tsai F.S., Lin L.W., Wu C.R. (2016). Lupeol and its role in chronic diseases. In: Gupta S., Prasad S., Aggarwal B. (eds) Drug Discovery from Mother Nature. Advances in Experimental Medicine and Biology, Volume 929. Cham: Springer. 2016, pp. 145−175.
  34. Silva A.T., Magalhães C.G., Duarte L.P., Mussel W.D., Ruiz A.L., Shiozawa L., Carvalho J.E., Trindade I.C., Vieira Filho S.A. Lupeol and its esters: NMR, powder XRD data and in vitro evaluation of cancer cell growth. Brazilian Journal of Pharmaceutical Sciences. 2017;53(3):e00251.
  35. Sánchez-Burgos J.A., Ramírez-Mares M.V., Gallegos-Infante J.A., González-Laredo R.F., Moreno-Jiménez M.R., Cháirez-Ramírez M.H., Medina-Torres L., Rocha-Guzmán N.E. Isolation of lupeol from white oak leaves and its anti-inflammatory activity. Industrial Crops and Products. 2015;77:827−832.
  36. Soren A.D., Lalthanpuii P.B., Lalchhandama K. GC-MS, antioxidant study and effect of Sesbania sesban var. bicolor on Raillietina echinobothrida and Syphacia obvelata. Biologia. 2024;79:1851–1859.
  37. Lalthanpuii P.B., Lalchhandama K. Antiparasitic activity of the steroid-rich extract of Schima wallichii against poultry cestode. Veterinary World. 2024 17(6):1299−1306.
  38. Faixová D., Hrčková G., Kubašková T.M., Mudroňová D. Antiparasitic effects of selected isoflavones on flatworms. Helminthologia, 2021;58(1):1−6.
  39. Wu W., Jia F., Wang W., Huang Y., Huang Y. Antiparasitic treatment of cerebral cysticercosis: lessons and experiences from China. Parasitology Research. 2013;112:2879−2890.
  40. Elissondo M., Dopchiz M., Ceballos L., Alvarez L., Bruni S.S., Lanusse C., Denegri G. In vitro effects of flubendazole on Echinococcus granulosus protoscoleces. Parasitology Research. 2006;98(4):317−323.
  41. Urrea-Paris M.A., Moreno M.J., Casado N., Rodriguez-Caabeiro F. In vitro effect of praziquantel and albendazole combination therapy on the larval stage of Echinococcus granulosus. Parasitology Research. 2000;86(12):957−964.
  42. Markoski M.M., Trindade E.S., Cabrera G., Laschuk A., Galanti N., Zaha A., Nader H.B., Ferreira H.B. Praziquantel and albendazole damaging action on in vitro developing Mesocestoides corti (Platyhelminthes: Cestoda). Parasitology International. 2006;55(1):51−61.